

Effective work practices for FLOSS development: A model and propositions
1

Kevin Crowston
*
, Hala Annabi

**
, James Howison

*
 and Chengetai Masango

*

* Syracuse University School of Information Studies

crowston@syr.edu, jhowison@syr.edu, cmasango@syr.edu

** University of Washington, The Information School

hpannabi@u.washington.edu

Abstract

We review the literature on Free/Libre Open Source

Software (FLOSS) development and on software devel-

opment, distributed work and teams more generally to

develop a theoretical model to explain the performance of

FLOSS teams. The proposed model is based on Hack-
man’s [1] model of effectiveness of work teams, with co-

ordination theory [2] and collective mind [3] to extend

Hackman’s model by elaborating team practices relevant

to effectiveness in software development. We propose a

set of propositions to guide further research.

1. Introduction

Free/Libre Open Source Software (FLOSS)
2
 is a broad

term used to embrace software developed and released

under an “open source” license allowing inspection,

modification and redistribution of the software’s source.
There are thousands of FLOSS projects, spanning a wide

range of applications. Due to their size, success and influ-

ence, the Linux operating system and the Apache Web

Server are the most well known, but hundreds of others

are in widespread use, including projects on Internet in-

frastructure (e.g., sendmail, bind), user applications (e.g.,

Mozilla, OpenOffice) and programming languages (e.g.,

Perl, Python, gcc).

Key to our interest is the fact that most FLOSS soft-

ware is developed by self-organizing distributed teams.

Developers contribute from around the world, meet face-

1
 This research was partially supported by NSF Grants 03-

41475 and 04–14468. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of the National Science Foundation.
2
 FLOSS software is generally available without charge (“free

as in beer”). Much (though not all) of it of is also “free soft-

ware”, meaning that derivative works must be made

available under the same license terms (“free as in speech”,

thus “libre”). We have chosen to use the acronym FLOSS

rather than the more common OSS to accomodate this range

of meanings.

to-face infrequently if at all, and coordinate their activity

primarily by means of computer-mediated communica-

tions (CMC) [4, 5]. These teams depend on processes that

span traditional boundaries of place and ownership. The

research literature on software development and on dis-

tributed work emphasizes the difficulties of distributed

software development, but the case of FLOSS develop-

ment presents an intriguing counter-example.

What is perhaps most surprising about the FLOSS

process is that it appears to eschew traditional project

coordination mechanisms such as formal planning, sys-

tem-level design, schedules, and defined development

processes [6]. As well, many (though by no means all)

programmers contribute to projects as volunteers, without

working for a common organization or being paid. This

heavy reliance on self-organization sets FLOSS teams

apart from most other distributed teams.

In this paper, we review the literature on FLOSS de-

velopment and distributed software development more

generally. We then develop a theoretical model to explain

the performance of FLOSS teams drawing on research on

group work. We use the model to propose a set of propo-

sitions to guide further research.

2. Current research on FLOSS

The nascent research literature on FLOSS has ad-

dressed a variety of questions. First, researchers have ex-

amined the implications of FLOSS from economic and

policy perspectives. For example, some authors have ex-

amined the implications of free software for commercial

software companies or the implications of intellectual

property laws for FLOSS [e.g., 7, 8, 9]. Second, various

explanations have been proposed for the decision by indi-

viduals to contribute to projects without pay [e.g., 10, 11-

14]. These authors have mentioned factors such as per-

sonal interest, ideological commitment, development of

skills [15] or enhancement of reputation [14]. Finally, a

few authors have investigated the processes of FLOSS

development [e.g., 4, 16], which is the focus of this paper.

Raymond’s [4] bazaar metaphor is the most well-

known model of the FLOSS process. While popular, the

bazaar metaphor has been broadly criticized. According to

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

its detractors, the bazaar metaphor disregards important

aspects of the FLOSS process, such as the importance of

project leader control, the existence of de-facto hierar-

chies, the danger of information overload and burnout,

and the possibility of conflicts that cause a loss of interest

in a project or forking [17, 18].

Recent empirical work has begun to illuminate the

structure and function of FLOSS development teams.

Gallivan [19] analyzes descriptions of the FLOSS process

and suggests that teams rely on a variety of social control

mechanisms rather than on trust. Several authors have

described teams as having a hierarchical or onion-like

structure [20, 21], as shown in Figure 1. At the centre are

the core developers, who contribute most of the code and

oversee the design and evolution of the project. The core

is usually small and exhibits a high level of interaction,

which would be difficult to maintain if the core group

were large. Surrounding the core are the co-developers.

These individuals contribute sporadically by reviewing or

modifying code or by contributing bug fixes. The co-

developer group can be much larger than the core, be-

cause the required level of interaction is much lower. Sur-

rounding the developers are the active users: a subset of

users who use the latest releases and contribute bug re-

ports or feature requests (but not code). Still further from

the core are the passive users. The border of the outer

circle is indistinct because the nature and variety of

FLOSS distribution channels makes it difficult or impos-

sible to know the exact size of the user population. As

their involvement with a project changes, individuals may

move from role to role. However, core developers must

have a deep understanding of the software and the devel-

opment processes, which poses a significant barrier to

entry [22-24]. This barrier is particularly troubling be-

cause of the reliance of FLOSS projects on volunteer

submissions and “fresh blood” [25]. It is important to note

that this description of a project team (Figure 1) is based

on a few case studies. While the model has good face

validity, it has not been extensively tested.

The other major stream of research ex-

amines factors for the success of FLOSS in

general (though there have been few sys-

tematic comparison across multiple pro-

jects, e.g., [26]). The popularity of FLOSS

has been attributed to the speed of devel-

opment and the reliability, portability, and

scalability of the resulting software as well

as the low cost [27-33]. In turn, the quality

of the software and speed of development

have been attributed to two factors: that

developers are also users of the software

and the availability of source code.

First, FLOSS projects often originate

from a personal need [34, 35], which at-

tracts the attention of other users and in-

spire them to contribute to the project.

Since developers are also users of the

software, they understand the system requirements in a

deep way, eliminating the ambiguity that often character-

izes the traditional software development process: pro-

grammers know their own needs [36]. (Of course, over-

reliance on this mode of requirements gathering may also

limit the applicability of the FLOSS model.)

Second, in FLOSS projects, the source code is open to

modification, enabling users to become co-developers by

developing fixes or enhancements. As a result, FLOSS

bugs can be fixed and features evolved quickly. Active

users also play an important role [37]. Research suggests

that more than 50 percent of the time and cost of non-

FLOSS software projects is consumed by mundane work

such as testing [38]. The FLOSS process enables hun-

dreds of people to work on these parts of the process [39].

Intriguingly, it has been argued that the distributed nature

of FLOSS development may actually lead to more robust

and maintainable code. Because developers cannot con-

sult each other easily, it may be that they make fewer as-

sumptions about how their code will be used and thus

write more robust code that is highly modularized [39].

It is noteworthy that much of the literature on FLOSS

has been written by developers and consultants directly

involved in the FLOSS community. These contributions

are significant as they point out the economic relevance of

FLOSS as well as the most striking aspects of the new

development process. Yet many of these studies seem to

be animated by partisan spirit, hype or skepticism [40].

There are only a few well-documented case studies [e.g.,

41], most of which discuss successes rather than failures.

Finally, with a few exceptions [e.g., 42, 43], the proposed

models are descriptive and based on a small number of

cases. This is both indicative of the relative novelty of the

issue and the lack of a clear theoretical framework to de-

scribe and interpret the FLOSS phenomenon [44]. Our

work is intended to fill some of these gaps by providing a

theoretically-based model of FLOSS development prac-

tices.

Core developers

Co-developers

Active users

Passive users

Initiator

Release

coordinator

Figure 1. Hypothesized FLOSS development team structure.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

3. Theory

We are interested in studying work practices that make

FLOSS projects more effective. To do so, we have chosen

to analyze developers as comprising a work team. Much

of the literature on FLOSS has conceptualized developers

as forming communities, which is a useful perspective for

understanding why developers choose to join or remain in

a project. However, for the purpose of this study, we view

the projects as entities that have a goal of developing a

product, whose members are interdependent in terms of

tasks and roles, and who have a user base to satisfy, in

addition to having to attract and maintain members. These

aspects of FLOSS projects suggest analyzing them as

work teams. Guzzo and Dickson [45, pg. 308] defined a

work team as “made up of individuals who see them-

selves and who are seen by others as a social entity, who

are interdependent because of the tasks they perform as

members of a group, who are embedded in one or more

larger social system (e.g. community, or organization),

and who perform tasks that affect others (such as custom-

ers or coworkers)”.

Given this perspective, we draw on Hackman’s [1]

model of effectiveness of work teams as a conceptual

basis for our study. While this model was initially pre-

sented as sets of factors, these factors point to work prac-

tices that are important for team effectiveness. Following

on Crowston and Kammerer [46], we use coordination

theory [2] and collective mind [3] to extend Hackman’s

model by further elaborating team practices relevant to

effectiveness in software development. In this section, we

describe these theories, their applicability to FLOSS de-

velopment and develop a set of propositions for future

work.

3.1. Team effectiveness model

Researchers in social and organizational psychology

have studied teams and their performance for decades and

have developed a plethora of models describing and ex-

plaining team behavior and performance. One of the most

widely used normative models was proposed by Hackman

[1], shown in Figure 2. Hackman’s [1] model is broadly

similar to other models [47], such as [48], [49] or [50].

However, Hackman’s model seems especially fitting be-

cause of its intended purpose of identifying factors related

to team effectiveness, broadly defined, and its inclusion of

team process factors.

3.1.1 Outputs. Hackman’s [1] model is presented in

an input-process-output framework. The output explained

by the model is team effectiveness, which is clearly a key

variable for our study: if we cannot distinguish more and

less effective teams, we cannot identify work practices

related to effectiveness. An attractive feature of Hack-

man’s [1] model is that effectiveness is conceptualized

along multiple dimensions, not just task output. Hackman

also includes the team’s continued capability to work to-

gether and satisfaction of individual team members’ per-

sonal needs as relevant outputs. These three types of

output correspond well to the effectiveness measures for

Process criteria
of effectiveness

• Level of effort brought
to bear on the team task

• Amount of knowledge
and skill applied to task
work

• Appropriateness of the
task performance
strategies used by the
team

Organizational context

A context that supports
and reinforces competent
task work, via:
• Reward system
• Education system
• Information system

Group design

A design that prompts
and reinforces competent
work on the task, via:
• Structure of the task
• Composition of the

group
• Group norms about

performance processes
Group synergy

Assistance to the group by
interacting in ways that:
• Reduce process losses
• Create synergistic process

gains

Material resources

Sufficiency of material
resources required to
accomplish the task well
and on time

Group effectiveness

• Task output acceptable
to those who receive or
review it

• Capability of members
to work together in the
future is maintained or
strengthened

• Members’ needs are
more satisfied than
frustrated by the group
experience

Figure 2. Hackman’s [1] normative model of group effectiveness.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

FLOSS projects identified by Crowston, Annabi and

Howison [51], who proposed measures including system

quality (task output), developer satisfaction (satisfaction

of individual needs), and number of developers, developer

turnover and progress of the project through stages of

development (e.g., alpha to beta to production), all indica-

tive of the continued ability of the team to work together.

Definition: Effectiveness for FLOSS teams can be

measured by creation of quality software, continued

team work and team member satisfaction.

3.1.2 Inputs. Hackman’s model includes two sets of

input factors, organizational context and group design.

Organizational context includes three factors:

• a reward system that provides challenging objectives

and consequences for excellent performance and thus

motivates effort;

• an educational system that provides outside expertise

to support appropriate knowledge and skills; and

• an information system that provides information about

the situation and likely outcomes of alternative actions

to enable appropriate task strategies.

For FLOSS teams though, identifying the organizational

context is problematic because teams are generally com-

posed of individuals from multiple organizations and con-

texts. This diversity may be advantageous, e.g., if the

team can take advantage of expertise available in different

settings. Alternately, it can be argued that the broader

FLOSS community itself provides the context, e.g., by

rewarding contributors with recognition. In either case,

these systems would not be under the control of projects.

However, to the extent that FLOSS teams are self-

organized, we argue that teams can create their own or-

ganizational contexts. In particular, we propose:

Proposition: Teams with practices that set challeng-

ing but obtainable goals will be more effective.

Proposition: Teams with practices that reward

members for contribution will be more effective.

Proposition: Teams with practices that access out-

side expertise will be more effective.

Proposition: Teams with practices that gather in-

formation about the situation and alternative actions

will be more effective.

The next set of inputs is team design, which includes

three promising factors to explore: task structure, team

composition and team norms.

• All FLOSS teams perform much the same task, namely

software development, but we anticipate seeing differ-

ences in the way teams structure the task. For exam-

ple, Harter et al. [52] found that the maturity of the

software process was related to development quality.

Some differences may relate to differences in the com-

plexity, uncertainty and scope of the software being

developed. To analyze task structure, we will use co-

ordination theory (discussed below).

• Based on the review above, we anticipate seeing dif-

ferences in practices related to team composition. In

particular, prior research on FLOSS has suggested the

importance of having contributions from members in

different roles, such as core members, co-developers

and active users.

Proposition: Teams with members contributing in a

variety of roles will be more effective.

• Finally, we anticipate differences in the development

of team norms, in particular, in the way new members

are socialized into and contribute to teams (as dis-

cussed below).

3.1.3 Process. The intermediary factors in Hackman’s

model are three process criteria (i.e., indications that the

process is working as it should): “the level of effort

brought to bear on the team task, amount of knowledge

and skill applied to task work, and appropriateness of the

task performance strategies used by the group” [1].

• Prior work has noted that distributed teams often

need to expend more effort to be effective [53], sug-

gesting the importance of the level of effort in the

process. Effort is important both individually and col-

lectively. An important factor for the success of

FLOSS teams is their ability to attract developers.

Proposition: Teams with members contributing at a

higher level of effort individually will be more ef-

fective.

Proposition: Teams with practices to attract contri-

butions from more developers will be more effec-

tive.

Proposition: Teams with practices to attract contri-

butions from more active users will be more effec-

tive.

• Amount of knowledge and skill applied also seem

critical, though possibly difficult to measure and

again perhaps not directly under the control of the

project.

Proposition: Teams with members who are more

knowledgeable and skilled will be more effective.

• We will use coordination theory to analyze task per-

formance strategies, as discussed below.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

3.1.4 Moderating factors. Finally, Hackman proposes

factors that moderate the relationship between process

and output, namely material resources, and between

inputs and process, namely team synergy.

For software development, relevant material re-

sources would seem to be limited to development tools,

which are readily available, thanks to systems like

SourceForge (http://sourceforge.net/) and Savannah

(http://savannah .gnu.org/), which host thousands of pro-

jects. Therefore, we do not include this factor in our cur-

rent theorizing. For future research, we plan to look for

ways in which tool use structures team practices.

The review of software development presented above

makes clear that practices for the development and main-

tenance of shared mental models will play an important

role in enabling team synergy. We will apply collective

mind [3] theory to conceptualize these models, as dis-

cussed below.

In the remainder of this section, we will discuss the

two supporting theories we will use to extend Hackman’s

model, namely coordination theory and collective mind

theory.

3.2. Coordination theory

We use coordination theory to analyze the structure of

the tasks and coordination mechanisms used within teams.

Many software process researchers have stressed the im-

portance of coordination for software development [e.g.,

36, 54]. For example, Kuwabara [55] states that, “coordi-

nation is a crucial element sustaining collective effort

giving the Linux its integrity that unfolds the seemingly

chaotic yet infinitely creative process of creation”. The

knowledge based-view of the firm [56] also emphasizes

coordination mechanisms as important for integrating the

knowledge of individuals into an organization’s products,

rules and routines.

Coordination theory provides a theoretical framework

for analyzing coordination in processes. We use the

model presented by Malone and Crowston [2], who define

coordination as “managing dependencies.” They analyzed

processes in terms of actors performing interdependent

tasks. These tasks might also require or create resources

of various types. For example, in software development,

developers might require bug reports into order to create

patches for the bugs. In this view, actors in organizations

face coordination problems arising from interdependen-

cies that constrain how tasks can be performed. Interde-

pendencies can be between tasks, between tasks and the

resources they need or between the resources used. Inter-

dependencies may be inherent in the structure of the prob-

lem (e.g., components of a system may interact with each

other, constraining how a particular component is de-

signed [57]) or they may result from the assignment of

tasks to actors and resources (e.g., two engineers working

on the same component face constraints on the changes

they can propose without interfering with each other).

One implication of this view is that an important man-

agement strategy for software development work is to

minimize dependencies, e.g., by creating software with

modules that can be worked on independently.

Proposition: Teams with task structures and prac-

tices that minimize dependencies will be more ef-

fective.

To overcome the coordination problems created by de-

pendencies, actors must perform additional work, which

Malone and Crowston [2] called coordination mecha-

nisms, or what Faraj and Xiao [58] call coordination prac-

tices. For example, if particular expertise is necessary to

fix a bug (a task-actor dependency), then a developer with

that expertise must be identified and the bug routed to him

or her to work on. For that to occur teams must have col-

lective mind as discussed in the next section. For any

given dependency, there may be a range of available

mechanisms, so project teams are expected to differ in

their choice of mechanisms. It is unlikely that there is a

single best set of mechanisms, but rather the fit of the

selected mechanisms with other team practices is ex-

pected to have implications for effectiveness.

Proposition: Teams with practices that manage de-

pendencies will be more effective.

3.3. Collective mind

The second theory we apply is collective mind, a the-

ory of the functioning of shared mental models. Shared

mental models, as defined by Cannon-Bowers & Salas

[59], “are knowledge structures held by members of a

group that enable them to form accurate explanations and

expectations for the task, and in turn, to coordinate their

actions and adapt their behavior to demands of the task

and other group members” (p. 228). Without shared men-

tal models, individuals from different teams or back-

grounds may interpret tasks differently, making

collaboration and communication difficult [60] and di-

minishing individual contributions to the collective goal.
Shared mental models are expected to lead to better

team performance in general [59] and for software devel-

opment in particular. Curtis, et al. [61], note that, “a fun-

damental problem in building large systems is the

development of a common understanding of the require-

ments and design across the project group” (p. 52). They

go on to say that, “transcripts of group meetings reveal

the large amounts of time designers spend trying to de-

velop a shared model of the design” (p. 52).

Proposition: Teams with more highly developed

shared mental models will be more effective.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

We note though that FLOSS teams are

hypothesized to have members contribut-

ing in a variety of roles, and shared mental

models are likely more important for a

core member than for a peripheral mem-

ber. As well, the need for shared mental

models may be reduced if there are fewer

dependencies among the tasks being per-

formed.

Following on work by Crowston and

Kammerer [46], we intend to apply Weick

and Robert’s [3] collective mind theory to

analyze shared mental models. We have

chosen this theory for several reasons.

First, previous conceptions of group mind

have been controversial because they

seemed to imply the existence of some

super-individual entity [62]. By contrast,

collective mind is described as an individ-

ual’s “disposition to heed,” hence an em-

phasis on “heedful” behaviors. If each

member of a team has the desire and

means to act in ways that further the goals

and needs of the team (i.e., “heedfully”),

then that team will exhibit behavior that

might be described as collectively intelli-

gent, even though it is the individuals who

are intelligent, not the team per se. Sec-

ond, Weick and Roberts [3] suggest that

collective mind is beneficial for situations

where there is need for high reliability,

non-routine work, and interactive com-

plexity (the combination of complex in-

teractions with a high degree of coupling),

all characteristics of much of software

development. Finally, the elements of the

theory fit cleanly into Hackman’s model,

as we now discuss.

Weick and Roberts [3] identify three

overlapping individual behaviours that epitomize collec-

tive mind: 1) contribution (an individual member of a

team contributes to the team outcome, one of Hackman’s

process factors), 2) representation (individuals build per-

sonal mental models of the team and its task, which we

view as an important factor for Hackman’s team synergy)

and 3) subordination (an individual puts the team’s goals

ahead of individual goals, a team norm that corresponds

to Hackman’s team design input). We note though that

membership in FLOSS teams is generally voluntary,

meaning that teams may not be able to demand subordina-

tion from team members. They may instead rely on

alignment between personal and collective goals, which is

closely related to the development of an effective project

reward system.

Proposition: Teams with practices that align indi-

vidual members’ goals and team goals will be more

effective.

Although conceptualized separately, these three con-

cepts overlap and reinforce one another to some degree.

For example, it is difficult to imagine heedful contribu-

tions from even highly talented and motivated individuals

with weak representations of the team’s needs and struc-

ture. While these actions go on in any group setting, the

issue for collective mind is how carefully, appropriately

and intelligently they are done. To the extent they are, the

team will display collective mind.

Given the importance of collective mind, we will look

not only for practices that exhibit it, but also those that

build and maintain it. For the later purpose, Brown and

Duguid’s [63] model of communities of practice seems

Table 1. Summary of concepts in proposed model
and corresponding phenomena.

Concepts Specific phenomena

Code quality

Project usage

User satisfaction

Project recognition

Continued system development

Group membership turnover

Team effectiveness

Developer satisfaction

Developer recognition

Practices that set goals and reward contribu-

tions

Practices that access outside knowledge

Organizational

context

Practices that access information about task

and alternatives

Task structure

Process activities and dependencies

Actors and roles

Composition of team

Experience

Cross-membership

Team design

Team norms about performance

Socialization of new members

Number of developers

Level of effort of developers (quantity and

quality)

Process criteria

Appropriate coordination mechanisms

Team communication patterns

Team synergy Shared mental models (representation)

Socialization, narration, collaboration

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

useful. Brown and Duguid [63] suggested three overlap-

ping social processes that underlie work practices: social

construction, narration, and collaboration. Construction

(or socialization) addresses the issue of people joining a

team needing to understand how they fit into the process

being performed (i.e., their representation, contribution

and subordination). New members need to be encouraged

and educated to interact with one another to develop a

strong sense of “how we do things around here” (i.e., rep-

resentation) [64]. Second, Brown and Duguid [63] stress

the importance of narration. To keep the collective mind

strong and viable, important events must be “replayed”

and reanalyzed, and the history that defines who the group

is and how it does things (representation) must be con-

tinually reinforced, reinterpreted, and updated and shared

with newcomer. Because the teams do not meet face-to-

face regular, opportunities for this type of interaction may

have to be deliberately created. Finally, Brown and

Duguid [63] stress the importance of collaboration, based

on narration, thus leading to the team synergy identified

in Hackman’s model.

Proposition: Teams with practices that include

higher levels of socialization, conversation and nar-

ration will display more highly developed shared

mental models.

Table 1 summarizes the constructs we will explore in

future studies of FLOSS development using this model.

4. Conclusion

In this paper, we presented a conceptual model and a

set of propositions concerning work practices within dis-

tributed FLOSS development teams. Developing a theo-

retical framework consolidating a number of theories to

understand the dynamics within a distributed team is itself

a contribution to the study of distributed teams and learn-

ing within organization literature [65].

We are currently applying the model in a field study of

FLOSS teams. To ground the concepts developed above,

we are collecting a wide variety of evidence, including

logs of ICT-supported interactions, bug reports, code

changes and project documents, as well as interviews with

developers. These data will be analyzed primarily through

content analysis, but also by creating process maps, cog-

nitive maps and social networks.

Understanding the work practices of teams of inde-

pendent knowledge workers working in a distributed en-

vironment is important to improve the effectiveness of

distributed teams and of the traditional and non-traditional

organizations within which they exist. The results of our

study could serve as guidelines (in team governance, task

coordination, communication practices, mentoring, etc.)

to improve performance and foster innovation. Distrib-

uted work teams potentially provide several benefits but

the separation between members of distributed teams cre-

ates difficulties in coordination and collaboration, which

may ultimately result in a failure of the team to be effec-

tive [66-69].

5. References

[1] J. R. Hackman, "The design of work teams," in The Hand-

book of Organizational Behavior, J. W. Lorsch, Ed. Englewood

Cliffs, NJ: Prentice-Hall, 1986, pp. 315–342.

[2] T. W. Malone and K. Crowston, "The interdisciplinary

study of coordination," Computing Surveys, vol. 26, pp. 87–119,

1994.

[3] K. E. Weick and K. Roberts, "Collective mind in organiza-

tions: Heedful interrelating on flight decks," Administrative

Science Quarterly, vol. 38, pp. 357–381, 1993.

[4] E. S. Raymond, "The cathedral and the bazaar," First Mon-

day, vol. 3, 1998.

[5] P. Wayner, Free For All. New York: HarperCollins, 2000.

[6] J. D. Herbsleb and R. E. Grinter, "Splitting the organization

and integrating the code: Conway’s law revisited," in Proceed-

ings of the International Conference on Software Engineering

(ICSE ‘99). Los Angeles, CA: ACM, 1999, pp. 85–95.

[7] C. Di Bona, S. Ockman, and M. Stone, "Open Sources:

Voices from the Open Source Revolution." Sebastopol, CA:

O'Reilly & Associates, 1999.

[8] B. Kogut and A. Metiu, "Open-source software develop-

ment and distributed innovation," Oxford Review of Economic

Policy, vol. 17, pp. 248–264, 2001.

[9] J. Lerner and J. Tirole, "The open source movement: Key

research questions," European Economic Review, vol. 45, pp.

819–826, 2001.

[10] G. Hertel, S. Niedner, and S. Herrmann, "Motivation of

Software Developers in Open Source Projects: An Internet-

based Survey of Contributors to the Linux Kernel," University

of Kiel, Kiel, Germany n.d.

[11] I.-H. Hann, J. Roberts, S. Slaughter, and R. Fielding, "Eco-

nomic incentives for participating in open source software pro-

jects," in Proceedings of the Twenty-Third International

Conference on Information Systems, 2002, pp. 365–372.

[12] J. Bessen, "Open Source Software: Free Provision of Com-

plex Public Goods," Research on Innovation July 2002.

[13] E. Franck and C. Jungwirth, "Reconciling investors and

donators: The governance structure of open source," Lehrstuhl

für Unternehmensführung und -politik, Universität Zürich,

Working Paper No. 8, June 2002.

[14] M. L. Markus, B. Manville, and E. C. Agres, "What makes

a virtual organization work?," Sloan Management Review, vol.

42, pp. 13–26, 2000.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

[15] J. Ljungberg, "Open Source Movements as a Model for

Organizing," European Journal of Information Systems, vol. 9,

2000.

[16] K. J. Stewart and T. Ammeter, "An exploratory study of

factors influencing the level of vitality and popularity of open

source projects," in Proceedings of the Twenty-Third Interna-

tional Conference on Information Systems, 2002, pp. 853–857.

[17] N. Bezroukov, "Open source software development as a

special type of academic research (critique of vulgar raymond-

ism)," First Monday, vol. 4, 1999.

[18] N. Bezroukov, "A second look at the Cathedral and the

Bazaar," First Monday, vol. 4, 1999.

[19] M. J. Gallivan, "Striking a balance between trust and con-

trol in a virtual organization: A content analysis of open source

software case studies," Information Systems Journal, vol. 11, pp.

277–304, 2001.

[20] J. Y. Moon and L. Sproull, "Essence of distributed work:

The case of Linux kernel," First Monday, vol. 5, 2000.

[21] A. Cox, "Cathedrals, Bazaars and the Town Council,"

http://slashdot.org/features/98/10/13/1423253.shtml, 1998, ac-

cessed 22 March 2004.

[22] R. T. Fielding, "The Apache Group: A case study of Inter-

net collaboration and virtual communities,"

http://www.ics.uci.edu/fielding/talks/ssapache/overview.htm.,

1997.

[23] C. Gacek and B. Arief, "The many meanings of Open

Source," IEEE Software, vol. 21, pp. 34–40, 2004.

[24] F. Hecker, "Mozilla at one: A look back and ahead,"

http://www.mozilla.org/mozilla-at-one.html, 1999.

[25] D. Cubranic and K. S. Booth, "Coordinating Open Source

Software development," presented at Proceedings of the 7th

IEEE Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises, 1999.

[26] K. J. Stewart and S. Gosain, "Impacts of ideology, trust,

and communication on effectivness in open source software

development teams," presented at Twenty-Second International

Conference on Information Systems, New Orleans, LA, 2001.

[27] V. Valloppillil, "Halloween I: Open Source Software,"

http://www.opensource.org/halloween/halloween1.html, 1998.

[28] K. Crowston and B. Scozzi, "Open source software projects

as virtual organizations: Competency rallying for software de-

velopment," IEE Proceedings Software, vol. 149, pp. 3–17,

2002.

[29] G. C. Prasad, "A hard look at Linux’s claimed

strengths…," http://www.osopinion.com/Opinions/ Ga-

neshCPrasad/GaneshCPrasad2-2.html, n.d.

[30] V. Valloppillil and J. Cohen, "Halloween II: Linux OS

Competitive Analysis," http://www.opensource.org

/halloween/halloween2.html, 1998.

[31] J. Hallen, A. Hammarqvist, F. Juhlin, and A. Chrigstrom,

"Linux in the workplace," IEEE Software, vol. 16, pp. 52–57,

1999.

[32] E. Leibovitch, "The business case for Linux," IEEE Soft-

ware, vol. 16, pp. 40–44, 1999.

[33] B. Pfaff, "Society and open source: Why open source soft-

ware is better for society than proprietary closed source soft-

ware," http://www.msu.edu/user/pfaffben/writings/anp /oss-is-

better.html, 1998.

[34] G. Moody, Rebel code—Inside Linux and the open source

movement. Cambridge, MA: Perseus Publishing, 2001.

[35] P. Vixie, "Software engineering," in Open sources: Voices

from the open source revolution, C. Di Bona, S. Ockman, and

M. Stone, Eds. San Francisco: O’Reilly, 1999.

[36] R. E. Kraut and L. A. Streeter, "Coordination in software

development," Communications of the ACM, vol. 38, pp. 69–81,

1995.

[37] T. O’Reilly, "Lessons from open source software develop-

ment," Communications of the ACM, vol. 42, pp. 33–37, 1999.

[38] T. Shepard, M. Lamb, and D. Kelly, "More testing should

be taught," Communication of the ACM, vol. 44, pp. 103–108,

2001.

[39] G. K. Lee and R. E. Cole, "The Linux Kernel Development

As A Model of Open Source Knowledge Creation," Haas School

of Business, University of California, Berkeley, Berkeley, CA,

Unpublished manuscript December 2000 2000.

[40] R. L. Glass, "Of open source, Linux, …and hype," IEEE

Software, vol. 16, pp. 126–128, 1999.

[41] A. Mockus, R. T. Fielding, and J. D. Herbsleb, "Two Case

Studies Of Open Source Software Development: Apache And

Mozilla," ACM Transactions on Software Engineering and

Methodology, vol. 11, pp. 309–346, 2002.

[42] R. Young, "How Red Hat Software stumbled across a new

economy model and helped improve an industry," in Open

sources: voices from the open source revolution, C. Di Bona, S.

Ockman, and M. Stone, Eds. San Francisco: O’Reilly, 1999.

[43] B. Behlendorf, "Open source as a business strategy," in

Open sources: Voices from the open source revolution, C. Di

Bona, S. Ockman, and M. Stone, Eds. San Francisco: O’Reilly,

1999.

[44] D. Cubranic, "Open-source software development," pre-

sented at 2nd Workshop on Software Engineering over the

Internet, Los Angeles, 1999.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

[45] R. A. Guzzo and M. W. Dickson, "Teams in organizations:

Recent research on performance effectiveness," Annual Review

of Psychology, vol. 47, pp. 307–338, 1996.

[46] K. Crowston and E. Kammerer, "Coordination and collec-

tive mind in software requirements development," IBM Systems

Journal, vol. 37, pp. 227–245, 1998.

[47] P. S. Goodman, E. C. Ravlin, and L. Argote, "Current

thinking about groups: Setting the stage for new ideas," in De-

signing Effective Work Groups, P. S. Goodman and Associates,

Eds. San Francisco, CA: Jossey-Bass, 1986, pp. 1–33.

[48] H. Kolodny and M. Kiggundu, "Towards the development

of a sociotechnical systems model in Woodlands Mechanical

Harvesting," Human Relations, vol. 33, pp. 623–645, 1980.

[49] D. L. Gladstein, "Groups in context: A model of task group

effectiveness," Administrative Science Quarterly, vol. 29, pp.

499–517, 1984.

[50] V. F. Nieva, E. A. Fleshman, and A. Rieck, "Team Dimen-

sions: Their Identity, Their Measurement, and Their Relation-

ships," Advanced Research Resources Organizations,

Washington, DC, Final Technical Report for Contract No.

DAHC19-78-C-0001 1978.

[51] K. Crowston, H. Annabi, and J. Howison, "Defining Open

Source Software project success," in Proceedings of the 24th

International Conference on Information Systems (ICIS 2003).

Seattle, WA, 2003.

[52] D. E. Harter and S. Slaughter, "Process maturity and soft-

ware quality: A field study," in Proceedings of the Twenty-First

International Conference on Information Systems, S. Ang, H.

Krcmar, W. J. Orlikowski, P. Weill, and J. I. DeGross, Eds.

Brisbane, Australia, 2000, pp. 407–411.

[53] R. J. Ocker and J. Fjermestad, "High versus low performing

virtual design teams: A preliminary analysis of communication,"

in Proceedings of the 33rd Hawaii International Conference on

System Sciences, 2000, pp. 10 pages.

[54] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the

software design process for large systems," CACM, vol. 31, pp.

1268–1287, 1988.

[55] K. Kuwabara, "Linux: A bazaar at the edge of chaos," First

Monday, vol. 5, 2000.

[56] R. M. Grant, "Prospering in dynamically-competitive envi-

ronments: Organizational capability as knowledge integration,"

Organizational Science, vol. 7, pp. 375–387, 1996.

[57] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J.

Offutt, "Maintainability of the Linux Kernel," Department of

Electrical Engineering and Computer Science, Vanderbilt Uni-

versity, http://www.vuse.vanderbilt.edu/%7Esrs

/preprints/linux.longitudinal.preprint.pdf, 2003, accessed 14 Dec

2003.

[58] S. Faraj and Y. Xiao, "Coordination in fast response or-

ganization," presented at Academy of Management Conference,

Denver, CO, 2002.

[59] J. A. Cannon-Bowers and E. Salas, "Reflections on shared

cognition," Journal of Organizational Behavior, vol. 22, pp.

195–202, 2001.

[60] D. Dougherty, "Interpretive barriers to successful product

innovation in large firms," Organization Science, vol. 3, pp.

179–202, 1992.

[61] B. Curtis, D. Walz, and J. J. Elam, "Studying the process of

software design teams," in Proceedings of the 5th International

Software Process Workshop On Experience With Software

Process Models. Kennebunkport, Maine, United States, 1990,

pp. 52–53.

[62] J. P. Walsh, "Managerial and organizational cognition:

Notes from a trip down memory lane," Organization Science,

vol. 6, pp. 280–321, 1995.

[63] J. S. Brown and P. Duguid, "Organizational learning and

communities-of-practice: Toward a unified view of working,

learning, and innovation," Organization Science, vol. 2, pp. 40–

57, 1991.

[64] M. O'Leary, W. J. Orlikowski, and J. Yates, "Distributed

work over the centuries: Trust and control in the Hudson's Bay

Company, 1670–1826," in Distributed Work, P. Hinds and S.

Kiesler, Eds. Cambridge, MA: MIT Press, 2002, pp. 27–54.

[65] D. Robey, H. M. Khoo, and C. Powers, "Situated-learning

in cross-functional virtual teams," IEEE Transactions on Profes-

sional Communication, pp. 51–66, 2000.

[66] S. L. Jarvenpaa and D. E. Leidner, "Communication and

trust in global virtual teams," Organization Science, vol. 10, pp.

791–815, 1999.

[67] F. Bélanger and R. Collins, "Distributed Work Arrange-

ments: A Research Framework," The Information Society, vol.

14, pp. 137–152, 1998.

[68] R. E. Kraut, C. Steinfield, A. P. Chan, B. Butler, and A.

Hoag, "Coordination and virtualization: The role of electronic

networks and personal relationships," Organization Science, vol.

10, pp. 722–740, 1999.

[69] E. Carmel and R. Agarwal, "Tactical approaches for allevi-

ating distance in global software development," IEEE Software,

pp. 22–29, 2001.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

9

