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Abstract: The vast majority of literature on coordination in team-based projects has drawn 
on a conceptual separation between explicit (e.g. plans, feedbacks) and implicit 
coordination mechanisms (e.g. mental maps, shared knowledge). This analytical distinction 
presents some limitations in explaining how coordination is reached in organizations 
characterized by distributed teams, scarce face to face meetings and fuzzy and changing 
lines of authority, as in free/libre open source software (FLOSS) development. 
Analyzing empirical illustrations from two FLOSS projects, we highlight the existence of a 
peculiar model, stigmergic coordination, which includes aspects of both implicit and 
explicit mechanisms. The work product itself (implicit) and the characteristics under which 
it is shared (explicit) play an under-appreciated role in helping software developers manage 
dependencies as they arise. We develop this argument beyond the existing literature by 
working with an existing coordination framework, considering the role that the codebase 
itself might play at each step. We also discuss the features and the practices to support 
stigmergic coordination in distributed teams, as well as recommendations for future 
research. “Not everything that implicitly exists needs to be rendered explicit” (Sloterdijk, 
2009, p. 3). 
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1. INTRODUCTION 

Coordination in software development teams has been a topic of perennial interest 

in empirical software engineering research and in management studies. Working under 

conditions of reciprocal task interdependence and high uncertainty (Faraj & Sproull, 2000; 

Okhuysen & Bechky, 2009) software development has often been considered a particularly 

appropriate setting in which to study and test coordination mechanisms and models. The 

usual starting point of the literature is a conceptual separation between the work itself, on 

the one hand, and activities undertaken to coordinate it, on the other. This split is clear in 
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the literature from Conway (1968) through Grinter (1996) and on to the socio-technical 

congruence work of Cataldo and Herbsleb (2008). This conceptual separation is not limited 

to the software engineering literature; it also figures in social science, where these two 

concepts are sometimes named “work” and “articulation work” (Gerson & Star, 1986; 

Strauss, 1985) and sometimes “tasks” and “coordination mechanisms” (Malone & 

Crowston, 1991, 1994). 

The information processing view of organizations (Galbraith, 1977; Thompson, 

1967) traditionally addresses coordination needs in two ways: creating opportunities for 

communication among interdependent actors or redesigning organizational processes to 

reduce interdependencies. Other classic organizational theory solutions include defining 

plans and feedbacks and “administrative coordination” (March & Simon, 1958). These 

formalized solutions are based on explicit coordination mechanisms that have to be 

planned and consciously accepted ex-ante. 

While such explicit coordination mechanisms have been most often identified as 

important, recent work has focused on implicit coordination mechanisms that allow 

members to predict and adjust behaviours without overt communication. The literature on 

“implicit coordination” argues that by sharing well-developed mental models that allow 

people to determine what needs to be done even in the absence of explicit communication 

and coordination (Crowston & Kammerer, 1998; Espinosa et al., 2001; Espinosa, Lerch, & 

Kraut, 2004; Rico, Sánchez-Manzanares, Gil, & Gibson, 2008). In other words, people’s 

background knowledge allows them to engage in interdependent activities without separate 

coordination mechanisms or explicit communication. They simply know what to do next 

based on experience. 

This paper makes the argument that the separation of work and coordination work 

may be disguising an important reality worthy of focused research in software 



development domain: that developers actively engage in identifying, understanding and 

resolving emerging dependencies in interaction with the work product itself (i.e., the 

codebase, that is, the source code of the system under development as it expands through 

contributions by others). Further, this interpretative process continues even when engaging 

in explicit discussion, such that the artifacts of work play a crucial and under-explored role 

in making such discussion effective. Thus, reversing Bendifallah’s (1987) idea that the 

“articulation of work can also become primary work”, we focus on the coordinating role of 

the artifact itself (and the established procedures for sharing and modifying it). Better 

understanding the capabilities of this mode of coordination is promising because the 

mechanism we discuss in this paper has low overhead and reduces the need for separate 

articulation work and therefore the need to maintain congruence between work and 

coordinating mechanisms. 

While artifacts have always been a minor (and under-investigated) feature of 

collaborative work, their use and usefulness increases with the migration of the 

collaborative activities towards online environments. In these virtual settings traditional 

coordination mechanisms (hierarchical direction, mutual adjustment in face to face 

meeting, etc.) face limitations and the artifact takes on a more important role. In the 

following sections we will introduce the concept of stigmergic coordination, as an 

emergent model for integrating explicit and implicit mechanisms where synchronous 

communication and physical proximity among actors are difficult. 

We structure this paper in four parts. First we present an extended literature review 

on coordination in software development, highlighting contributions examining the active 

role of the codebase, especially those that make an analogy to stigmergy. We then provide 

empirical illustrations of this idea, drawing from free/libre and open source software 

(FLOSS) projects. Next we draw on an existing coordination framework to consider this 



role systematically. Finally we consider why this mechanism has been under-appreciated 

and suggest novel strategies for advancing research on this topic. 

2. LITERATURE REVIEW 

Coordination is a significant concern in empirical studies of software development 

and has been extensively studied. Research on coordination in software development has 

taken two basic approaches to the question of interdependencies in software development: 

elimination or adjustment. Elimination is a strategy that attempts to analyze and plan in 

advance in order to reduce and ideally eliminate these dependencies, for example by 

identifying components and specifying their interactions in advance (Baldwin & Clark, 

2000; Eppinger, Whitney, Smith, & Gebala, 1994; Parnas, Clements, & Weiss, 1984), 

often through well-designed and documented component APIs (De Souza, Redmiles, 

Cheng, Millen, & Patterson, 2004). 

Empirical studies, however, have repeatedly identified the inadequacy of such 

strategies. Curtis and colleagues examined how requirement and design decisions were 

made, represented, communicated, and how these decisions impacted subsequent 

development processes for large systems (Curtis, Krasner, & Iscoe, 1988). They found that 

large projects have extensive communication and coordination needs that are not mitigated 

by documentation, and emphasize the resulting need for explicit discussion among 

developers. Consistent with this suggestion, Kraut and Streeter found that the formal and 

informal communication mechanisms for coordinating work on large-scale, complex 

software projects were important for sharing information and achieving coordination in 

software development (Kraut & Streeter, 1995) and, further, that reliance on personal 

linkages rather than electronic networks contributed to coordination success (Kraut, 

Steinfield, Plummer, Butler, & Hoag, 1999). 



In sum, such studies have found that, regardless of efforts to reduce dependencies, 

communication between the actors is correlated to the ability to coordinate their work 

activities (Herbsleb & Moitra, 2001) because such communication helps the actors identify 

and resolve dependencies as they become apparent through the unfolding of the work. This 

view has been summarized in Conway’s law, which states that the structure of a product 

mirrors the structure of the organization that creates it (Conway, 1968). Cataldo and 

Herbsleb (2008), following this second path of argument, have examined the impact on 

software development productivity of socio-technical congruence between the coordination 

requirements and mechanisms. They demonstrate that organizations were more successful 

when there was congruence between the structure of technical dependencies as a source of 

coordination requirements and the capability to coordinate, as measured by the 

organization’s communication patterns (based on co-location, team membership and 

explicit discussion). Halverson and colleagues study the role of task visualization as a 

support to social inferences, thus focusing their analysis on the “articulation of work” 

(visual representation as support to coordination) rather than on the work itself (Halverson, 

Ellis, Danis, & Kellogg, 2006). 

In recent years, the congruence hypothesis has been tested because increasingly 

software development is undertaken by teams that are geographically or organizationally 

distributed. Such virtual work reaches an extreme form in free/libre open source software 

(FLOSS) development, which is often undertaken outside of any particular organizational 

context by teams that may rarely if ever meet face-to-face. Conway’s law suggests that 

splitting software development across a distributed team will make it hard to achieve an 

integrated product (Herbsleb & Grinter, 1999). More effort is required for interaction when 

participants are distant and unfamiliar with each other’s work (Seaman & Basili, 1997). 

Curtis and colleagues noted that coordination breakdowns were likely to occur at 

organizational boundaries, but that coordination across these boundaries was often 



extremely important to the success of the project (Curtis et al., 1988). The additional effort 

required for distributed work often translates into delays in software release compared to 

traditional face-to-face teams (Herbsleb & Moitra, 2001; Mockus, Fielding, & Herbsleb, 

2000). And yet the success of at least some FLOSS development projects provides a 

visible counter-example.  

The mirroring relationship between product-structure and organization-structure 

also implies that the complexity and emerging characteristics of collaborative and 

distributed objects (as FLOSS) can rarely be anticipated ex-ante through prescribed and 

formalized organizational solutions. Thus, building on the well-established concepts 

(Schelling, 1960), several researchers have investigated how implicit coordination 

mechanisms can manage interdependencies among emergent and unfolding activities 

(Bechky, 2003; Giustiniano & Bolici, 2012; Puranam, Singh, & Chaudhuri, 2009). In a 

study of requirements development, Crowston and Kammerer (1998) found that collective 

mind was an important factor in coordination: in successful groups, developers knew what 

each would do and could therefore make their work fit the whole better. Faraj and Sproull 

(2000) found a strong relationship between expertise coordination and team performance, 

over and above the contribution of team input characteristics, presence of expertise and 

administrative coordination. Espinosa and colleagues (2001) tested whether implicit 

mechanisms such as shared mental models are used for coordination for geographically 

distributed projects. In a later study, they concluded that an effective strategy for 

coordination success involves finding a mix of explicit and implicit coordination 

mechanisms appropriate for the task, which may change as the task progresses across time 

(Espinosa et al., 2004). 



2.1 The role of the codebase in coordination 

While the role of the codebase has not been at the center of the approaches to 

coordination reviewed above, it has not been entirely absent. Sørgaard distinguished 

between two types of coordination, “one is by explicit communication about how the work 

is to be performed...another is less explicit, mediated by the shared material used in the 

work process” (Sørgaard, 1988, p. 321). Schmidt and Simone (1996) refer to this “shared 

material” as the “field of work” paying attention to the shared, visible workspace and its 

changes, as indirect interaction between actors. They argue that “cooperative work is 

constituted by the interdependence of multiple actors who, in their individual activities, in 

changing the state of their individual field of work, also change the state of the field of 

work of others and who thus interact through changing the state of a common field of 

work” (Schmidt & Simone, 1996, p. 95). At that time they did not, however, focus on the 

field of work (visible artifacts and their interpretation) as a primary coordination 

mechanism, preferring to focus on separate structures of articulation work realized in 

separate coordination protocols. Within these coordination protocols, however, they do 

consider the role of artifacts, describing a coordination mechanism as a “coordinative 

protocol imprinted upon a distinct artifact, which...stipulates and mediates the articulation 

of cooperative work so as to reduce the complexity of articulation of work” (Schmidt, 

2011, p. 117). The artifact in question in their work is an objectification of the processes of 

articulation work, rather than the work itself. 

De Souza and colleagues (2005) originally considered the codebase as “pure 

inscriptions...that describe the forms and patterns of software system structure and 

operation”. In later work, however, De Souza and Redmiles (2009) present an 

ethnographic analysis of the use of API as a coordination mechanism. APIs are, of course, 

part of the shared codebase, and they find them to play three roles: as contracts they 

facilitate planning, as boundaries they help to assign individual tasks, and they ground and 



drive developers’ discussions. Other work has highlighted the importance of active 

interpretation of the codebase, although it has focused on textual comments embedded in 

the code, rather than the code itself (Ying, Wright, & Abrams, 2005), sometimes improved 

by, for example, social tagging (Storey, Cheng, Bull, & Rigby, 2006) within codebases. 

The role of mediating artifacts has been addressed also in the management 

literature, through two related concepts: Trading Zones and Boundary Objects. Trading 

Zones, introduced by Kellog and colleagues (2006), is a “coordination structure that 

facilitates cross-boundary coordination in fast paced, temporary, and volatile conditions”, 

and thus “[e]ngaging in a trading zone suggests that diverse groups can interact across 

boundaries by agreeing on the general procedures of exchange even while they may have 

different local interpretations of the object being exchanged” (Kellogg et al., 2006, p. 39). 

The researchers identified three practices that enact the trading zone: display (to make the 

work visible), representation (to express the work in a particular form that can be used by 

others) and assembly (to refer to, reuse, revise and align the work products of other 

communities in the construction of their own independent products). The trading zone 

concept is very useful because it focuses the attention on the workspace and the practices 

actors can perform in the workspace as organizational coordination mechanisms. 

Boundary objects, introduced by Star (1989) and Griesemer (1989) are artifacts that 

allow the coordination of the perspectives and meaning among different communities. 

Common artifacts that embed ideas and concepts belonging to different communities that 

do not usually share practices make it possible to create an inter-group connection without 

any direct form of communication between the actors of the different communities. 

2.2 Stigmergic coordination 

A promising line of work has approached the role of the “shared material” in 

coordination through an analogy to the biological process of stigmergy, “a class of 



mechanisms that mediate animal-animal interactions” (Grassé, 1959). As Heylighen writes, 

“A process is stigmergic if the work (‘ergon’ in Greek) done by one agent provides a 

stimulus (‘stigma’) that entices other agents to continue the job” (Heylighen, 2007, p. 7). 

In stigmergic coordination, each insect (ant, bee, etc.) influences the behavior of 

other insects by indirect communication through changes to their shared environment (e.g., 

chemical traces or building material for the nest). The action of an actor produces changes 

in the environment and these changes can provide a stimulus for other actors who respond 

with another action triggered and shaped by the previous one. An example is termites 

building nests by dropping their mud on existing piles, rather than starting piles of their 

own or ants finding food by following the pheromones of previous scavengers (Heylighen, 

2007). This process allows the building of complex and interdependent structures without 

central coordination and direct communication. Stigmergic social insect behavior explains 

how simple agents, without deliberation, communication or central coordination, can 

contribute to a common result simply responding to stimuli provided by other individuals 

and by the environment. 

The stigmergic approach suggests that the “shared material” itself can be a 

coordination mechanism, without recourse to separate articulation work. Christensen 

(2008) observed this type of coordination amongst building architectures, arguing that their 

work is partly coordinated directly through the material field of work, “in addition to 

relying on second order coordinative efforts (at meetings, over the phone, in emails, in 

schedules, etc.), actors coordinate and integrate their cooperative efforts by acting directly 

on the physical traces of work previously accomplished by themselves or others.” 

(Christensen, 2007, p. 17)  

While stigmergy has been used in cognitive science (Susi & Ziemke, 2001) and 

multi-agent systems simulation in particular (Ricci, Omicini, Viroli, Gardelli, & Oliva, 



2007), only recently has it been applied to the coordination of software development, 

particularly in efforts to explain coordination in open source software development (Dalle 

& David, 2003; den Besten, Dalle, & Galia, 2008; Heylighen, 2007; Robles, Merelo, & 

Gonzalez-Barahona, 2005). “This theory suggests that communities would cognitively and 

collectively react to some of the signs (stigma, in ancient Greek) that characterize the 

collective output of the community the code base...” (den Besten et al., 2008, p. 318). It has 

been used as the basis for a simulation (Robles et al., 2005), a comparison between the 

structure of the code and the division of labor (den Besten et al., 2008) and a high-level 

analogy for the organization of open source production (Heylighen, 2007). 

3. EMPIRICAL ILLUSTRATION 

Below we turn to an existing framework for understanding coordination in order to 

systematically consider the roles that could be played by the codebase, but first we provide 

empirical illustration of the codebase playing a role in coordination. In order to find 

empirical illustrations of stigmergic coordination in software development projects, we 

analyze a virtual setting in which traditional coordination mechanisms face limitations and 

thus alternative mechanisms seem to be more applicable. We focus in particular on a 

FLOSS development project. FLOSS projects provide an interesting setting in which to 

study coordination as they face the challenges of coordinating action in distributed 

environments, with substantial numbers of volunteers, changing and fuzzy lines of 

authority, and limited or no access to traditional mechanisms of ad hoc coordination, such 

as face to face meetings or even telephones. Research on FLOSS is enhanced by the 

excitement with which it is held as a model success for distributed, innovative work 

(Basili, 2001). FLOSS appears to eschew traditional project coordination mechanisms such 

as formal planning, system-level design, schedules, and defined development processes 

(Herbsleb & Grinter, 1999). Characterized by a globally distributed developer force and a 



rapid and reliable software development process, effective FLOSS development teams 

somehow profit from the advantages and overcome the challenges of distributed work, 

making their practices potentially of great interest to mainstream development (Alho & 

Sulonen, 1998).  

Accordingly our empirical illustrations come from two comparable FLOSS 

projects, Fire and Gaim. Both projects were relatively successful community-based 

projects developing a multi-protocol IM client. A first example of stigmergic coordination 

in Fire development project emerges from a chat between two developers: 

<reallyjat> i just noticed that the readme has the wrong month on it...so 

i’ll fix that  

<gbooker> :)  

<reallyjat> i made some changes to the about box...did you notice?  

<gbooker> Just finished downloading. Haven’t check out CVS in a while 

though. This is one long changelog. 

The words of the first developer, reallyjat, illustrate a first point: he checked the CVS and 

he noticed a (minor) issue, deciding to fix it, acting on his interpretation of the artifact 

itself. Secondly, we notice that reallyjat seems to expect that gbooker would be watching 

changes in the CVS. Thus, it seems that their expected way of working is to make changes 

in the code and examining other’s changes in the CVS. The third consideration is that, as 

soon as the two developers start discussing, gbooker downloads the last software version 

and examines it so that both developers can refer to the code while discussing. 

The role of the code itself as an active element in coordinating development 

activities can also be seen in another example: 



<jtownsend> Reading your description above this all sounds like a good 

idea. However, in looking at the code I’m wondering whether we should 

be case insensitive on the tags like we were before… 

In this example, jtownsend seems to agree with a developer’s proposal, but as soon as he 

examines the code he changes his mind and advocates against a specific technique that had 

made sense in explicit discussion. This example shows that decisions about a development 

task change after the interaction between the developer and the code itself. 

Other developers in their development activities can directly interpret artifacts of 

work: 

<Dan Scully> I’ve attached a preliminary patch for RSS Newsfeed 

support...Most of the patch is self-explanatory, but I’ll cover the major 

ideas here… 

The importance of the artifact of work in FLOSS development project is also confirmed by 

the words of a Fire key developer that interviewed about what communication channel was 

predominant in coordinating development activities who said that “CVS was most 

important for most tasks.” 

These examples illustrate, in a manner limited by the evidence issues we consider 

below, the role that the code itself plays in shaping software development activities. We 

have illustrated examples in which development tasks are influenced by developers’ 

interaction with the artifact of work itself and the manner in which the code plays a role in 

coordination among developers. 

4. ANALYSIS: COORDINATION FRAMEWORK 

In this section we analyze stigmergic coordination using the well-known 

coordination framework proposed by Malone and Crowston (1994). Doing so, we can 



analytically introduce a structure to the concept of stigmergic coordination, defining the 

potential role of the code itself as coordination mechanism. Malone and Crowston define 

coordination as “managing dependencies between activities.” Considering a programmer 

facing a shared codebase this has four components: 

1) recognition of an activity (e.g. a goal to be accomplished) 

2) recognition of dependency 

3) understanding of dependency (type, source, importance) 

4) management of that dependency: eliminate or satisfy (accommodate) 

The codebase can play a role at each of these stages, either alone or together with other 

mechanisms. While new activities might normally be identified through requirements 

analysis, the codebase itself can suggest new activities to developers, especially as it 

changes through the work of others. This can be as obvious as identifying a bug, or an 

improvement on another’s work, or as subtle as noticing that a newly added library 

provides services that suggest a new feature to the developer. The first illustration above 

includes identifying a task (noticing an error in the readme file). 

Once an activity has been identified, accomplishing it in a coordinated matter is a 

matter of knowing how to do it without interfering with: 

1) what is there already, 

2) what is currently being done elsewhere, or 

3) what is to be done in future. 

The codebase is particularly well suited to recognizing dependencies between an activity 

and what is there already. Unlike even the drawings and sketches used by architects 

(Christensen, 2008), software code is an active artifact: it can be executed and tested at any 

time. This is important because a developer can run the software and obtain direct 

feedback about the success or failure of the current version of the artifact with their 



changes. They can iteratively enhance their understanding of their task and modify their 

strategy for managing interdependencies between what is there already and what they are 

trying to accomplish. In this way a developer interacting with a codebase is similar to an 

explicit discussion, where rapid rounds of feedback can occur. This means a developer can 

avoid direct discussion with others, since their active engagement with the artifact can 

provide substantial insight. 

Further, if direct discussion is needed (and it often is (Gutwin, Penner, & 

Schneider, 2004)), developers can engage in highly contextualized discussion supported by 

their shared artifact. We argue that it is a common experience of programmers, especially 

in distributed teams, to experiment before seeking explicit discussion, and then to ground 

that explicit discussion in the context of continuing experimentation. The codebase also 

seems likely to play an important role when developers are seeking to understand whom to 

talk with, especially the observation of recent changes in different areas. 

It is more challenging to see a role for the codebase alone in understanding what is 

currently being done elsewhere and what is to be done in the future, since it is likely that 

there is little evidence about those in the codebase itself. This is the issue pointed out by 

studies focusing on raising awareness of what others are doing, prior to them checking 

code in and thus altering the shared artifact (Sarma, Noroozi, & Van Der Hoek, 2003; Tam 

& Greenberg, 2006). Similarly, while the current codebase may give hints in regard to 

future plans of others and the team, since these are not yet realized in working code, the 

ability to iteratively experiment discussed above is not available. Such plans may exist in 

other artifacts of the team, such as collected user stories, but the mental effort required to 

transpose those to code is substantial and the literature reviewed in our introduction 

suggests that interdependencies only emerge in a concrete way as the code is written. This 

does help to re-conceptualise the useful role of intermediate representations of future plans, 



such as executable specifications (also known as tests that fail), as practiced in the Ruby 

community through RSpec. 

Once dependencies have been identified, a coordination mechanism is necessary. 

The codebase can play the role of a coordination mechanism for several kinds of 

dependencies. We consider in turn goal decomposition, prerequisite constraints and 

usability. 

Goal decomposition (as part of task/subtask decomposition) consists in the 

decomposition of goals into elementary activities. These are dependencies, as the subtasks 

need to be selected to achieve the desired goal. A developer that wishes to contribute to a 

project can understand which tasks should still be addressed (bug resolution, new feature, 

etc.) simply looking to the code itself and then can provide her/his contribution. We have 

an empirical illustration of this when user darkrain, without any previous communication 

or even a bug report, posted a patch for fixing two bugs. After few days, and with out any 

intervening discussion, user chipx86 posted a new patch that solves the same problems in a 

presumably more effective way, writing in the SVN “This looks much better.” We found 

no further discussion of these alternatives until after a few days user seanegan, the lead 

developer, thanked him with the brief sentence “chipx86 fixed it” and then closed the bug 

report. 

Prerequisite constraint is a specific form of producer/ consumer dependency that 

emerges when a certain task must be completed before that another activity can begin. 

When this dependency exists, there should be some for of notification that will allow the 

beginning of the next activity, as in this illustration, where two actors (gbooker and 

jtownsend) co-develop a new feature (AIM buddy blocking). gbooker, who seemed to be 

driving the implementation of this specific feature, committed new code together with an 

SVN log message that read, 



Once we get the notification change about the pref change for allow those 

not in buddy list, we will be good to go!!.  

Four hours later, jtownsend posted new code that, “add[s] notification of block non-

buddies pref changing”.  

Usability is another form of producer/consumer dependency. Describing usability, 

Malone and Crowston (1991, p. 95) describe the dependency by noting that “whatever is 

produced should be usable by the activity that receives it.” The code itself, with its 

language and its compiling rules, can be seen as a source of standardization for developers’ 

activities. This use of the code could explain episodes from the FLOSS cases where 

developers seem to prefer to point directly to the code rather than explain or describe what 

they have done. For example, in one task from Fire the main activity is the development of 

the file transfer infrastructure, a task mainly realized by gbooker with the collaboration of 

one other developer. During a period of 25 days, the developers change the code 31 times 

(fixing bugs in the file transfer implementation) without any trace of explicit 

communication between them being recorded in the public archives. Suitably the 

description in the SVN release notes is very simple and begins with this line: 

Way too much to describe here... 

In another example we find a developer posting:  

I’ve attached a preliminary patch for RSS Newsfeed support.... Most of the 

patch is self-explanatory, but I’ll cover the major ideas here . . . 

In both the examples the code itself plays a role in the communication among developers 

and provides a reference point to which to compare each developer’s activity. 



5. DISCUSSION  

The possibility and importance of stigmergic coordination through software 

repositories raises two important implications. The first is a challenge to the current 

formulation of socio-technical congruence (Cataldo & Herbsleb, 2008). The second 

explores recommendations flowing from understanding source code repositories as 

communicative and coordination venues: what features and practices best support 

stigmergic coordination? 

Some researchers (Cataldo & Herbsleb, 2008; Cataldo, Wagstrom, Herbsleb, & 

Carley, 2006) frame the question of inquiry into socio-technical congruence as one 

between a set of actors (social frame) and a set of artifact/technical objects (technical 

frame) and argue that the two sets should fit in order to have better performance. Further it 

focuses on measuring the social frame through a set of interaction measures including co-

location, co-presence on a sub-team and evidence of direct discursive communication. 

In contrast the work in this paper suggests that the social and the technical are 

continuously interacting through an additional venue: the actors are leaving traces of their 

actions in the code and they are reading and reflecting on the code written by others in 

order to take coordinated action. In such a situation the code influences the actors’ 

behaviors and actors’ behavior simultaneously influences the shape of new code. However, 

this type of coordination is difficult to analyze through the congruence measures suggested 

by (Cataldo et al., 2006), since the social and technical frames cannot be separated for 

analysis. The implication is that analyses seeking to assess social-technical congruence, 

indeed all analyses of coordination, should also consider the extent of stigmergic 

coordination—the extent to which developers are able to resolve emergent dependencies 

by examining the changing codebase. 



The second implication focuses on the communicative aspects of the code 

repository and its role in stigmergic coordination. This conceptualization directs attention 

to the affordances of the repository: a good artifact for stigmergic coordination ought to be 

widely available and readily understandable, both as a final product (readable code) and, 

more novelly, as a dynamic product. Dynamic understandability explains the development 

and widespread acceptance of FLOSS project development norms such as atomic commits, 

meaning that logically linked changes can be bundled together but should be separated 

from logically distinct changes. Indeed entire tool development efforts, such as SVN and 

git have focused on supporting these practices. The practice of making only atomic 

commits reduces the size of each commit and ensures that each has a single purpose, 

making them much more understandable by other developers. In contrast, a large, 

multipurpose contribution (also known as a code bomb) is much less useful, since it 

requires considerable work to understand. Where accessible clear code and comments are 

insufficient, programmatic descriptions of developer intent such as test suites and 

executable specs can extend the coordinative capacity of repositories. Further, this 

conceptualization helps to convey how good documentation practices provide resources for 

developers to identify and resolve emergent dependencies. Conceptualizing such practices 

as key in coordination ought to help with their design and evaluation: how well do the 

practices and artifacts serve developers in their active identification, understanding, and 

interpretation of interdependencies between activities? 

Our understanding of the coordinating role of shared code repositories also 

continues the questioning of the function of modularity as coordination through 

information hiding (Baldwin & Clark, 2000; Parnas et al., 1984). If one of the functions of 

the repository is dynamic understanding for adaptive collaboration as requirements change 

and dependencies become clearer, then enforcing strict information hiding through access 

controls in the source code repository seems likely to be counter-productive, removing the 



ability of developers to track the evolution of each other’s work and mutually adjust to it; 

this is similar to the argument regarding the pros and cons of fixed APIs (De Souza & 

Redmiles, 2009). Information overload is reduced if the repository and its history are 

available for inspection when the developer wants, as opposed to only through explicit 

discussions that lose their context over time. 

The primary advantage of stigmeric coordination is that it is possible in contexts 

where synchronous communication and physical proximity among actors are difficult or 

impossible. This is because stigmergy is enabled by the interaction between an individual 

and the artifact itself, not multiple individuals. Thus, at any time each individual can access 

the artifact of work so that they can interpret the changes made by the other developers and 

eventually leave their own. Thus, stigmergic coordination can be reached at any time and 

from any place, since it is independent of the presence of the other actors involved in 

collaborative activities. 

While a transparent, changing codebase has intriguing advantages it also has clear 

limitations as a coordination mechanism. As discussed above it does not seem likely to 

play a significant role when the dependencies are generated by work yet to be visible in the 

codebase. This suggests that it will find its primary usefulness in iteratively evolving 

software. Since this is most clear in the FLOSS context this helps to explain why we and 

other authors have noticed it there. A second limitation is that the artifacts need to be 

interpreted by developers. Thus, in some cases, coordination through artifacts can lead to 

potential misunderstanding if developers do not share a similar “professional vision” 

(Goodwin, 1994) or are not able to translate the existing codebase into a “shared mental 

model” of others’ intentions. 



5.1 Strategies for research 

We believe that the stigmergic mechanism of coordination has been under-

appreciated in the literature because it is difficult to observe and measure. This is because 

the work of stigmergy occurs primarily in the heads of developers and in their non-

recorded interactions with the code in their private workspaces. Research on coordination 

in software development has not ventured into this territory. In this section we consider 

two broad strategies that might be pursued to examine these ideas further and discuss the 

challenges attendant to each. The first is proof by elimination and the second is proof by 

positive demonstration. 

In principle it ought to be possible to create a convincing demonstration of 

developers’ use of stigmergy by eliminating other known coordination mechanisms, 

demonstrating an explanatory gap that the perspective presented in this paper can credibly 

fill. This argument is possible because in a pure case of stigmergic coordination there will 

be no record left at all, unlike explicit plans, procedures or discussion. Yet the absence of 

data as a form of proof is particularly hard to rely on, since the possibility reasonably exists 

that additional, uncollected communication, such as the use of unarchived IRC, direct 

instant messenger or non-archived emails, or even face to face or telephone 

communication occurred but has not been collected. For example, we examined the dataset 

collected by Howison (2008), focusing on tasks in which more than one developer wrote 

code and found that 14 of 20 had no explicit discussion between the developers in the 

publicly archived data. Yet, since the participants were not able to provide IM or IRC logs 

from that period, we could not rule out the possibility that the dependencies were in fact 

identified and resolved through explicit discussion, rather than active interpretation of 

shared artifacts alone. 



The difficulties of negative evidence suggest instead the second strategy of proof by 

positive demonstration, that is to seek clear evidence of how developers use the codebase 

in coordinating. One opportunity is to search the archives of explicit communication within 

a group for references to uses of code. The empirical illustrations quoted above do, we 

hope, provide evidence of expectations and practices consistent with the operation of 

stigmergic coordination. Yet the reality persists that an invisible process only becomes 

visible in this way when it fails in some way, coming up against its limitations. In this way 

all evidence that leaks into explicit discussion is likely to be relatively ambiguous. 

A second form of proof by positive demonstration, however, may be more 

productive. It may be possible to ask developers to explain out loud how they were able to 

manage emergent dependencies in a programming task, highlighting in detail when they 

identified a dependency and how they explored it and came to choose their course of 

action. Conducting such an interview could be augmented with click-stream data of their 

interactions with the codebase (and other tools in their environment), assisting their recall 

and providing the interviewer a resource for directed questioning. This method, of course, 

would be qualitative with both the positive and negative implications that come with such 

an approach. Negatively it would be invasive, time-consuming and not representative, in 

that one could only conduct detailed interviews with a limited number of participants and 

tasks. Positively, however, this method might provide the most useful detail on how the 

process works, when it is useful and when it is not and, importantly, what software 

engineers might do to support and extend this coordination mechanism. 

6. CONCLUSION 

This paper has argued that the literature on coordination in distributed development 

teams would be improved by consideration of a currently under-appreciated line of 

reasoning inspired by stigmergy. Here the active, interpretative role of the developer, 



especially as they interact with and observe a dynamic codebase is understood as an 

important coordination mechanism. Stigmergic coordination emerges between the 

individual and the collective level: looking at the behavior of a group of developers, they 

seem to be cooperating in an organized and coordinated way for the production of complex 

software; but at each individual level, they often seem to be working alone (Howison & 

Crowston, 2014). We provide illustrations of this concept, reasons why we believe this 

mechanism has been under-appreciated, and strategies for further research on stigmergy in 

software work. 
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