
Working Paper—Not for citation

COLLABORATION THROUGH SUPERPOSITION:

HOW THE IT ARTIFACT AS AN OBJECT OF COLLABORATION AFFORDS
TECHNICAL INTERDEPENDENCE WITHOUT ORGANIZATIONAL

INTERDEPENDENCE

James Howison Kevin Crowston

Carnegie Mellon University Syracuse University
jhowison@cs.cmu.edu crowston@syr.edu

ABSTRACT

This paper develops a theory of collaboration through superposition: the process of depositing

separate layers on top of each other over time. The theory is developed in a study of development

of community-based Free and Open Source Software (FLOSS), through a research arc of

discovery (participant observation), replication (two archival case studies) and formalization (a

model of developer choices). The theory explains two key findings: 1) the overwhelming

majority of work is accomplished with only a single programmer working on a task and 2) when

tasks appear too large for an individual they are more likely to be deferred until they are easier,

rather than being undertaken through structured teamwork. It is theorized that this way of

organizing is key to successful open collaboration where the IT artifact is the object of

collaboration, because it allows the co-production of technically interdependent artifacts through

motivationally interdependent work. The affordances of software as an object of collaboration

are used as a framework to analyze efforts to learn from FLOSS in other domains of work and in

the IS function of for-profit organizations.

This research was partially supported by the National Science Foundation under Grants 04–14468, 05-27457 and
07–08437.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 1

COLLABORATION THROUGH SUPERPOSITION:

HOW THE IT ARTIFACT AS AN OBJECT OF COLLABORATION AFFORDS
TECHNICAL INTERDEPENDENCE WITHOUT ORGANIZATIONAL

INTERDEPENDENCE

James Howison Kevin Crowston
Carnegie Mellon University Syracuse University

jhowison@cs.cmu.edu crowston@syr.edu

INTRODUCTION

New ways of organizing closely associated with information systems, such as Open Source

Software and Wikipedia, are surprising because they blend two circumstances that the literature

has consistently found to be challenging: working at a distance (e.g., Lipnack and Stamps, 1997;

Olson and Olson, 2000) and working with sporadically available volunteers (e.g., Dunlop, 1990;

Handy, 1988). Unsurprisingly, then, many researchers and managers look to this way of

organizing for inspiration, hoping to learn from their example (e.g., Agerfalk and Fitzgerald,

2008; von Krogh and von Hippel, 2006; Scacchi et al., 2006; Stewart and Gosain, 2006).

The relationship between information technology and organization has been of great interest to

Information Systems (e.g., Crowston and Malone, 1988; Desanctis and Poole, 1994; Markus and

Robey, 1988; Orlikowski, 1992). In these new ways of organizing information technology plays

two important roles. First, IT plays a relatively well-studied role as a medium of collaboration

(e.g., Daft and Lengel, 1986; Dennis et al., 2008). Second, these forms have at their centre an IT

artifact in a novel role as the object of collaboration, such as software source code or wiki pages.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 2

This paper develops the empirically grounded theory that the affordances of the IT artifact as an

object of collaboration are tightly bound to the success of these novel ways of organizing.

A strong line of literature has argued the structures of technical interdependence embedded in the

work itself determine the type of organization most suited to that work (e.g., Malone and

Crowston, 1994; Thompson, 1967; Van de Ven et al., 1976). Recently, however, this line of

thinking has been challenged by studies driven by a practice view of work (Shea and Guzzo,

1987; Wageman, 1995; Wageman and Gordon, 2005). The challenge suggests that similar work

can be accomplished successfully with very different patterns of interdependence, and moreover

that patterns of appropriate task interdependence are driven as much by factors such as individual

preferences and technological affordances as by unchangeable requirements of work.

This paper introduces the impact of participant motivations on patterns of interdependence and

work. It argues that the motivational environment is important even when building software

collaboratively, a task where the technical interdependence of the work has been held to be

especially determinative (e.g., Herbsleb et al., 2001). In short, the paper argues that the IT

artifact as an object of collaboration affords collaboration through superposition: the laying down

of motivationally-independent layers over time, each layer taking previous layers as its starting

point and, in turn, providing a base and inspiration for the next.

As an empirical example and source of ideas for theorizing, this paper examines Free (Libre) and

Open Source Software development, herein abbreviated as FLOSS. FLOSS is a canonical type of

distributed, online production (e.g., von Hippel and von Krogh, 2003; Wasko and Faraj, 2005).

The projects studied in this paper are community-based FLOSS projects, meaning that they have

no institutional existence (e.g. non-profit foundations) nor do they have significant corporate

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 3

involvement; in this way the projects chosen epitomize what is most novel in the FLOSS

phenomenon; its least hybridized form.

Existing research on FLOSS development has concentrated in three areas: inputs (including

motivations), processes (such as coordination or governance) and outputs (such as

implementations or software quality). It is established that FLOSS participants are driven by a

variety of motivations (e.g., Feller et al., 2005; Ghosh et al., 2002; Lakhani and Wolf, 2003;

Lakhani and von Hippel, 2003; Roberts et al., 2006), including the need for software itself,

learning, ideological commitment and, at least for long-term participants in well-known projects,

reputation, although perhaps not to the degree suggested by economists (e.g., Lerner and Tirole,

2002). While there is a growing contingent of participants who participate as part of a paid job

(Roberts et al., 2006), in the community-based projects that this paper focuses on participants are

participating in their “spare time” (Luthiger and Jungwirth, 2007). Process research has focused

on coordination, documenting the prevalence of practices such as self-assignment of tasks (the

essence of volunteerism), “short-cut” decision making processes as well as a tendency to “code

first” and then work together on integration (Crowston et al., 2005; Yamauchi et al., 2000).

Comparisons of coding practices found that FLOSS projects tend to have smaller and more

frequent check-ins than commercial projects (Mockus et al., 2002).

Research has also focused on characteristics of these projects which may help to overcome the

seeming limitations of the organizational form, including control (Gallivan, 2001), governance

(O'Mahony and Ferraro, 2007), ideology (Stewart and Gosain, 2006), past collaborative ties

(e.g., Hahn et al., 2008) and knowledge flow between FLOSS projects (e.g., Daniel and Diamant,

2008). Literature examining the outputs of FLOSS projects includes research studying software

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 4

quality (e.g., Schach et al., 2003) and work establishing a definition for IS success in the FLOSS

context (e.g., Crowston et al., 2006).

Unfortunately there are very few studies which link across these areas, linking motivations,

organization and success. There are a small number of articles that draw on the job design

tradition (e.g., Hertel, 2007; Ke and Zhang, 2008) and work contributed by academics with

strong practitioner backgrounds in FLOSS that emphasizes the volunteer environment as

fundamental to the organization of successful FLOSS production (Capiluppi and Michlmayr,

2007; Michlmayr, 2004). Attention has also been drawn to the possible connection between

technical structures in the artifact and the volunteer context, arguing that more modular

structures ought to attract more volunteers (Baldwin and Clark, 2006; Conley and Sproull, 2009;

MacCormack et al., 2006). This paper contributes to existing literature on FLOSS by linking

motivation and process, arguing that by looking at these together one can understand the FLOSS

phenomenon, and the contingencies in its adaptability, better.

The purpose and structure of this paper

The overall purpose of this paper is empirically grounded and illustrated theory development

(e.g., Weick, 1989, 1995), undertaken though an unfolding arc of discovery, replication and

formalization. Discovery consisted of four years of participant observation in a community-based

FLOSS project, replication consisted of an archive-based field study in two similar FLOSS

projects. Finally the theory is formalized through a rational expectations model of developer

decision-making. The first section of the paper, therefore, is divided into three parts, one for each

part of this arc. The discussion that follows is in two parts: firstly we examine the specific role of

the IT artifact (Benbasat and Zmud, 2003; Orlikowski and Iacono, 2001) in supporting this

model of organizing. We focus on the affordances of IT artifacts as the object of work and their

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 5

interaction with the resource environment faced by these production communities. Secondly,

drawing on this discussion, we demonstrate the usefulness of our theory by examining the

challenges of adapting FLOSS organization for other types of work and institutional

environments, including the IS function in traditional, for-profit businesses.

DISCOVERY: PARTICIPANT OBSERVATION

For over four years the first author participated in and observed the BibDesk project, a

community-based FLOSS project producing a reference manager akin to Endnote. This section is

written in the first person from the perspective of the first author, highlighting the

epistemological origins of the understandings it presents. Participant observation began with the

sensitizing concepts of motivation and interdependency. Data collection was through journaling

and periodic review of archival records. Simultaneously, I was actively reading the growing

FLOSS literature as well as testing and expressing my growing insights through writing and

presenting in both academic and practitioner venues (such as O’Reilly OSCON). In this way the

insights were shaped by the contrast between the understandings of FLOSS I encountered and

my experience in BibDesk.

Into the field

I let my case emerge naturally from my day-to-day practice as an academic, adopting FLOSS

tools wherever possible, from Word to LaTeX, Endnote to BibDesk, SPSS to the R statistics

package. BibDesk supported my writing work well. The project has always been open source,

founded by a graduate student at UCSD; many of the participants were fellow graduate students

and all were volunteers and none met face to face, making BibDesk a good non-hybridized case

of community open source. Within its niche BibDesk is a successful project: it has consistently

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 6

been in the very top percentile of active Sourceforge projects and, as of October 2008, listed 13

developers, although only 5 were consistently active throughout my observation period, the

others entering and leaving over time.

The working life of BibDesk occurs in a number of different communication venues: the deeper

one’s participation, the more venues one encounters. My first encounter with the project was

through the application itself; I consider the experience of using the application to be an

important shared foundation for communication within a project. The project mailing lists were

the next venues I encountered, both the bibdesk-users list and the bibdesk-dev list. My first

message to the list suggested a feature improvement; in reply the founder gently and

encouragingly directed me to a specific section of the code.

Fired up, I was able to download the code through the anonymous CVS provided by

SourceForge and attempted to build the project from source. This introduced me to another

project venue, the source code repository. When I first downloaded the code (“checked out”) and

attempted to compile the application, the code did not successfully build. This was, I

introspected, a frustrating experience, immediately undermining my motivation to contribute.

Girded, however, by commitment to the project as a research setting, I determined that the source

of the errors was that the default build settings placed external libraries used by the project in a

different place than the compilation settings now used by all the developers.

My first contribution, therefore, was a Perl script to download these libraries to the correct place

on the disk, then check out the BibDesk source and build the application. I submitted this script

to the developer mailing list where it was well received: the developers hadn’t known that their

source didn’t build easily on potential contributors machines. This task was also my first

introduction to the project’s unit of contribution: the patch. A patch is a set of changes, a “diff”

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 7

which is applied to the codebase adding new functionality or fixing bugs. As developers work on

the code, they share that work with other developers by submitting patches. These patches can be

sent to the mailing list, but are more commonly used to update a shared copy of the source code

kept in a source code control system (in the case of BibDesk, a system called CVS), called

“making a commit”. The resulting process is somewhat like co-authors sharing Word documents

with tracked changes. Figure 1 shows the relationship between four different views of the

project’s source code.

Figure 1: Four views of project code. Patches build up over time through superposition, changing

the codebase and application, implementing features.

With longer participation I also came to encounter another important venues: trackers. These are

web-forum like issue management systems. BibDesk used just the default types from

Sourceforge: Bugs and Request for Enhancements (new features). While most discussion

remained on the mailing list, trackers were used as longer-term memory especially when mailing

list threads became fractured by long pauses in a discussion.

As I became more involved in the project I found that my understanding of the life of the project

was not organized by any technological feature of any of these tools, such as threads or tracker

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 8

items, but episodes of work in which the developers and users were engaged, which I call tasks.

Tasks provide coherence to work but leave traces scattered throughout different venues. Thus a

task might begin with messages on a mailing list, then posts in a tracker, then as a patch, then as

a CVS check-in and finally as a functional change to the application itself. Others tasks might

simply show up in CVS then the application.

Three vignettes

In this section I outline three episodes of work in the BibDesk project, designed to highlight the

findings of my participant observation.

Container Column One task I undertook as part of the BibDesk project was to create a new

kind of column in the summary display labeled “Container”. This column displays the Journal

title for articles and the title of the conference or proceedings for Conference Proceedings

(journal and conference title are separate fields in a BibTeX record and so would otherwise be

displayed in two columns). I undertook this task in April 2005 motivated purely out of personal

annoyance at the small screen of my laptop, which made it difficult to see both columns at once.

I worked on this task in private, without sharing my plans with the project beforehand, since I

thought I had a good understanding of what I wanted to achieve and did not want to bother the

other developers with simple questions about the code, especially if I wasn’t able to complete the

task. My first exposure of the idea was an email to the developer's list, describing the feature and

including a patch. I hadn't committed it to CVS—even though I had commit privileges—because

the patch didn't work quite as I'd hoped (it wouldn't sort properly), but worked well enough to

show my intentions. The project founder reviewed the patch, endorsing the intended change, and

replied with comments on how to fix the sorting issue. I found this motivating (especially as it

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 9

was an embarrassingly simple error on my behalf) and so after 4 hours further work, I fixed the

sorting and committed the patch, thus making the results of my work available to other

developers and users. In total I estimate that it took about 20 hours of work spread over three

days.

This episode was fairly typical of my involvement, and, by observation, the patterns of

involvement of other developers. Tasks tended to be primarily undertaken by an individual

programmer in a relatively short period of time at the developer’s own behest, motivation and

timing. Support between developers, if there was any, was unplanned; more a case of reaching

out in case anyone was there than a case of planned inter-dependency. Tasks result in a single

patch which bundles up the changes necessary to effect the changes to the application, resulting

in immediately useful incremental progress.

Bibdesk 2.0: The second illustrative episode is in strong contrast to the style of task related

above. The BibDesk 2.0 episode was a long running period in which the intention of the group

was to release a re-factored and largely rewritten BibDesk. Yet as of June 2010 the current

version was 1.5.2, which is to say that BibDesk 2.0 never emerged. The effort began in the same

way as BibDesk itself: as a private project of the project founder that was eventually moved into

BibDesk's public repository. One of the main intentions was to move BibDesk from a very

heavily BibTeX-centered project to a generic reference manager able to be integrated with

document preparation systems other than LaTeX, a persistent user request. BibTeX was to be

replaced as the underlying file format and instead be simply one export format among many. In

addition it was the stated intention that the work would make contribution easier by refactoring

the codebase.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 10

The 2.0 project, however, never caught hold. I managed to build it a number of times, but the

functionality was low compared to the 1.0 version and none of the developers could adopt it for

day-to-day work. Rather than switching work to the BibDesk 2.0 version the participants—other

than the project founder—largely continued to tweak BibDesk 1.0. It was not the case that there

was significant tension about this, but the reality was that it was hard for the rest of the project to

change tack and focus on BibDesk 2.0, even though the participants generally agreed with a need

for a re-write and did contribute some small testing and work on the BibDesk 2.0 module (which

remains in the BibDesk code repository). Instead work progressed on the BibDesk 1.0 module in

small steps. Nonetheless the developers eventually achieved most of the features planned for 2.0:

a vastly improved group system, a very flexible non-BibTeX template system, the ability to store

more than one file per entry and to use file aliases instead of full paths. The project achieved this

through small additions over time, retaining the basic architecture of the 1.0 software and even

the reliance on the BibTeX file format.

The BibDesk 2.0 episode envisaged a fairly radical reconfiguration of the relationships between

the developers. It placed other developers as dependent on the completion of work by the project

founder or, had others joined the effort, interdependent on contributions by each other where the

payoff in working software was weeks if not months down the track. This is quite different than

the normal working mode of incremental small steps with immediate payoffs. Even though the

group took a consensus decision to hold off adding new features to the 1.0 codebase, as time

stretched forward this was tacitly abandoned; the developers returning to their non-

interdependent incremental development process.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 11

2003 email (on discussing a desirable feature):

I really want to use this, but the conditions have never quite been right - either I was
waiting for … RSS+RDF (now looks like it'll never happen) or … an XML bibliographic file
format … (could happen now, but I ran out of free time).

2007 email (on checking in working code for this feature):

It was much easier than I expected it to be because the existing groups code (and search
groups code) was very easy to extend. Kudos - I wouldn't have tried it if so much hadn't
already been solved well.

Table 1: An episode from BibDesk, discussing the ability to subscribe to online
reference lists. These two emails were sent four years apart: the complex work was
deferred until other work, done for its own purposes, had made the original desired

feature possible to accomplish through short, individual work.

Web groups: The third vignette shows that this incremental, layered process is surprisingly

capable. Table 1 provides an example of this style of development reflected in two emails from

the project founder, written four years apart. The first email is a response to a suggestion I made

regarding a feature to subscribe to publication lists on academic’s personal homepages. The

project founder had previously conceived of this and agreed that it would be a useful feature but

never began work on it. I also found the task too complicated for the time I was able to devote to

the project. The task was thus left languishing. Four years later, somewhat out of the blue, the

project founder (by then relatively inactive) contributed the feature, emphasizing that in the

intervening years the task had become “much easier”. This was, he explained, because of the

incremental layered work of other developers; work undertaken not in preparation for Web

Groups but for other features that literally just happened to also support Web Groups. This work

had prepared the ground, so that a developer working alone in a matter of days could complete

the feature that earlier had been too much work to complete.

Participant observation findings

These vignettes illustrate the major findings of the participant observation.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 12

Organization and Interdependency: The unit of contribution in the project was the patch,

wrapping up code changes associated with a particular task. Project members built on each

other’s work, but just as a patch alters only what is there already, they very rarely relied on each

other’s future availability or planned work. They did not work entirely alone, but sought and

gave support only spontaneously. Tasks tended to be relatively short, on the order of a few days

of work. Work that did not fit this model was difficult to complete, sometimes failing

completely. At other times, such work was deferred, usually revisited only when other

independent work had, in an unplanned way, changed the codebase so that the work could be

accomplished in short independent tasks.

Motivation and Organization: While motivation is an often-studied topic in research on

FLOSS, it has only been studied through surveys and interviews. Participant observation affords

the addition of introspection. My experience pointed to the involvement of two aspects of

volunteer motivation that fit with the organization of work above. Firstly I was only able to work

on the project in my free time and my free time did not come consistently, therefore I was not

keen to take on tasks that I did not feel I could finish in the time I knew I had available.

Secondly, I worked alone because I did not want to rely on the free time and commitment of

others to finish my work; I felt I had no right to request their time and since their commitment

was also unpredictable I did not want to rely on their portion of shared work being completed. I

did not want to be left “high and dry” if they, quite legitimately, had to attend to their real life.

Collaboration through Superposition: The identification of the patch as the unit of

contribution lead to the conceptualization of superposition as vital to the way software is

produced in the BibDesk project. Work proceeded in small, independent tasks, each with a

functional pay-off through its changes to the codebase and thus application (see Figure 1 [p 7]).

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 13

These layered on top of each other over time, each creating the circumstances taken as given for

the production of the next layer in a way analogous to the superposition of rock strata.

Superposition through layering is a way of understanding software—and its construction over

time—that is related to, but distinct from, modularity. As mentioned above, modular

architectures are suggested as fundamental to good software and to attracting volunteer

participants (Baldwin and Clark, 2006; Conley and Sproull, 2009; MacCormack et al., 2006). A

module has as its distinguishing characteristic its separateness from other code, as measured by

low coupling, and the manner in which it groups related functionality (Parnas et al., 1981), as

measured by high cohesion. By contrast, a software layer, as conceived in this paper, may draw

on code from many functional modules to deliver its payoff; its distinguishing characteristic is

that it takes as its starting point only what is already there. Indeed most patches seemed to span

across formal modules since they were focused on delivering new functionality rather than

optimizing code. Modularity may assist with producing software in layers, by reducing the

amount of the codebase that needs to be altered and thus understood. But they are not the same

thing: modularity is a characteristic of the codebase, while superposition through layering is a

characteristic of its production, as shown in Figure 1 [p 7]. This conceptualization is used in the

model developed below and elaborated in the Discussion.

REPLICATION: ARCHIVAL CASE STUDIES

The insights reported above are derived from one individual’s experience of a single project. If

these findings describe a socio-technical phenomenon worth theorizing about they ought to be

repeated in similar socio-technical environments. Thus in order to challenge and strengthen the

insights gained from participant observation, we undertook an archive-based field study. The

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 14

specific goal of the study was to see whether the findings from the participant observation,

specifically the layering of short, individual episodes of work and the deferral of complex work,

could be replicated.

Case Selection: Two cases similar to BibDesk and to each other were selected for this analysis:

Fire and Gaim, both instant-messaging clients. They are appropriately similar in that they are

entirely volunteer-based without revenues or foundations; they are hosted on Sourceforge and

use similar tools. They are approximately the same size as Bibdesk and undertake development

for applications used by their developers. As well, the two are comparable to each other because

they develop similar applications.

Data: Participant observation had indicated that work proceeds across many project venues, and

a coherent understanding of the project’s organization could not be obtained from single venues,

such as the mailing list, alone. Therefore data collection was as comprehensive as possible: from

Mailing lists, Source code repositories (CVS and SVN), Forums, Issue Trackers and Release

Notes. We analyzed an inter-release period (approximately 45 days) for each project, chosen to

be close in calendar time so the projects work would be dealing with similar external contexts.

Analysis: The goal of the analysis was to document how work was done in the two projects.

Starting from the participant observation and working inductively, we developed a set of

concepts to describe the work as a set of tasks. We defined a Task Outcome as a change to the

shared outputs of the project, usually the software but also potentially including documentation

or the project website. A Task, then, was a series of Actions undertaken by Participants

contributing to the Task Outcome. Actions could be observed in the participant observation

study, but in this archival study we relied on Documents, such as emails or CVS check-ins or log

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 15

messages, to provide evidence of these Actions. Table 2 [p 15] shows definitions of these

concepts.

Concept Definition - Example

Document Archived Content - An email message, Tracker comment, Release Note
Event An Event causes a Document, or many Documents, to be archived

 Sending an email, releasing a version
Participant A distinct individual involved with the project Larry Wall (the person), Sean Egan (the person)
Identifier A string identifying a Participant Larry Wall (the name), larry@wall.org (an email address)
Task
Outcome

A change to the shared output of the project
 A new feature, a fixed bug, updating documentation

Action Work which contributes to a Task Outcome
 Writing a translation, requesting a feature, writing code

Task The sequence of Actions contributing to a particular Task Outcome
 Creating a new “buddy search”

Table 2: Concepts used in organizing archival records

In this framework, the goal of the data analysis was to assemble evidence of the Tasks performed

in each project—in terms of Participants, Actions and Outcomes—from the evidence in the

collection of Documents for each project. We did this by organizing the archive into collections

of Documents for each Task. We began with the Release Notes, and the README file: literally,

a file in the source named README, containing notes from the developers about the code,

updated as the code is updated, and often including the participants’ own description of Task

Outcomes. Documents from the various data sources relevant to each Task were then grouped

together. However, the Release Notes and changes to the README file do not necessarily

record all completed Task Outcomes, so we worked iteratively until we had assigned all the

records from the source code repository (since they all necessarily alter the shared work

product), creating new Tasks as needed. A total of 106 Tasks were identified, 62 for Fire and 44

for Gaim, 65 from the Release Notes, 31 from changes to the README file and 10 from

changes to the source code repository alone.

Once we had a set of Tasks, each described by an outcome and including a collection of

Documents, the Documents were examined to identify the Actions contributing to the Task

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 16

Outcome. Actions were classified using the inductively developed coding scheme shown in the

Appendix. Actions were also coded for their timing and the Participants involved. Table 3 shows

sample Tasks, with their Actions and the codes applied to them. The top cell shows a task in

which multiple programmers worked; this is, perhaps, a common image of collaboration. The

bottom cell shows contrasting examples of when only a single programmer worked on a task.

Co-Production

Date/Gap Actor (overall role) Action Code Applied

Gaim Task 2: manual browser security fix
20 July 2002 kareemy (user) reports bug Use Info. Provision
1D 5h 50m lschiere (dev) attempts diagnosis Code Info. Provision
(undated) robot101 (p dev) writes patch Code Production
20D 9h 41m seanegan (dev) checks in patch Review
10D 18h 10m seanegan (dev) tweaks fix Polishing Prod.
1D 20h 8m chipx86 re-writes fix Core Production
1D 3h 20m seanegan (dev) move fix to branch Management Work

Solo Production

Date/Gap Actor (overall role) Action Code Applied

Fire Task 57: user list duplicate fix
06 Dec 2002 gbooker (dev) fixes bug Core Production

Gaim Task 3: iconv library integrated
02 Aug 2002 seanegan (dev) adds library Core Production
19m 52s seanegan (dev) edits ChangeLog Documenting Work
26m 10s seanegan (dev) integrates library Core Production

Fire Task 5: scroll on PgUp
19 Nov 2002 nkocharh (p dev) makes PgUp scroll Core Production

Fire Task 29: AIM buddy icons
27 Oct 2002 gbooker (dev) checks in buddy icon code Core Production
(same time) gbooker (dev) changes ChangeLog Documenting Work
39m 3s gbooker (dev) add jpg icons Polishing
1h 22m gbooker (dev) add bitmap icons Polishing
12h 1m gbooker (dev) .buddyicon save Polishing
1h 22m gbooker (dev) add bitmap icons Polishing
3D 13h 1m gbooker (dev) fix IRC icons Polishing
3D 18h 34m gbooker (dev) fix memory leak1 Core Production
1h 6m 23s gbooker (dev) fix memory leak2 Core Production

Table 3: Illustrative Tasks. These tables show tasks as re-organized from the project
archives, with Actions undertaken by Participants contributing to Task Outcomes. The
Actions have been coded according to their contribution to the outcome.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 17

The goal of our analysis was to determine if the findings from the participant observation held in

other settings and with a more rigorous analysis. We present evidence from the data concerning

two of these findings: the length of and participation in work episodes and deferral of work.

Figure 2: A histogram showing the skewed distribution of the length of tasks.

Figure 3: Tasks tended to involve only individual programmers. Figure shows tasks in Fire and
Gaim classified primarily by the number of programmers. N=106.

Short and Individual Episodes: We found clear evidence replicating the finding of work being

undertaken in short and individual episodes. First, the mean and median duration of a Task was

shorter than 1 week, as shown in Figure 2; the few longer outliers are discussed below. Second,

as shown in Figure 3, overall approximately 80% of the Tasks involved only a single participant

writing code. A further approximately 10% of Tasks were primarily programmed by a single

participant, with a small amount of ‘polishing’ work done by another participant, work such as

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 18

fixing a spelling mistake. Less than 10% of Tasks involved more than one person programming;

these we call co-work. Even within the co-work episodes, only one involved any Actions coded

as Management work to synchronize the work of two programmers. The co-work Tasks showed

no signs of systematically greater complexity, such as involving more lines of code.

Difficult work was deferred: There was evidence that work was deferred when it seemed hard

to complete. Figure 4 [p 19] shows a plot of long running Tasks. The release period is marked on

the horizontal axis. The early Actions in these Tasks were all coded as Support, usually feature

requests or posts accepting a feature as desirable. Close inspection shows that all the production

work for these Tasks was completed relatively quickly at the end of the Task, during the release

period, even on those tasks that had been outstanding for months.

Qualitative investigation of these tasks provides evidence of similar processes of deferral to

those found in BibDesk; a feature request was acknowledged as desirable, but the work was

initially considered too difficult to undertake. For example, Task f_9 in Figure 4 [p 19] consists

of a feature request made in March 2003. At that time there is discussion amongst the developers

of the desirability of the feature, yet no work is done until October 2003, when the developer

comments that an unrelated feature has simplified the request, “This is possible now with the

‘once’ option probably I will check it in the next week or so”. In the specific case of these Instant

Messaging clients, the addition of protocol specific libraries, written outside the project,

facilitated waves of tasks, resolving outstanding acknowledged feature requests or bugs. These

tasks are also striking for what did not occur: despite their early endorsement as desirable, there

was no evidence of detailed planning, assignment or breakdown of work towards these tasks, nor

even explicit anticipation of a new library version. Rather the exogenous arrival of a new library

prompted individual short integrative tasks.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 19

Figure 4: Difficult Tasks were deferred. The figure shows long running Tasks begun by requests
by peripheral participants (black circles). These were accepted by core participants (grey plus
symbols) but deferred until the inter-release period, when production work (grey triangles) was

undertaken in short tasks with only single programmers. n=17 (of 106 total tasks)

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 20

Replication Findings

Overall, archival analysis of two additional projects supported the findings from the participant

observation: the work in Fire and Gaim was undertaken overwhelmingly through individual,

short episodes of work. There was very little evidence of planning work (only found in a single

task) and no evidence of resource management. Complex work was deferred, rather than being

broken down into smaller components to be undertaken collaboratively.

FORMALIZATION: THEORY ELABORATION

In order to explain these replicated empirical findings, in this section we develop a formal model

of developer’s decisions about whether to undertake a particular programming task. The model

attempts to capture essential features of this decision making through a simplified, stylized

model. By model, we mean a logical, formal analysis that draws implications for behavior from

the basic principles (Kaplan, 1964). The model to be developed draws on a logical analysis of

two concepts: the structure of software and individual decision making. We present our

assumptions about each of these aspects in turn.

Dependency in layers

Considering the software structure first, participant observation found that the unit of

contribution was the patch and that patches nearly always delivered changes with immediate

payoffs in functionality or usability. This structure of development works because of the

fundamental characteristic of software discussed above: it is additive, meaning that it can be built

up through the superposition of layers over time.

Layering gives rise to two important types of dependencies in software production. Figure 5 [p

21] illustrates these relationships. From top to bottom the layers depend on each other

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 21

functionally; without the lower layers the code will not compile and the application simply will

not be able to run. In the diagrams to follow all higher layers depend on an unbroken stack of

lower layers, with the higher layers said to have a functional dependency on the layer beneath it.

Figure 5 also shows the second type of dependency, called a utility dependency. Some layers of

software have no direct utility to the user and depend on higher layers to expose their

functionality, thereby releasing value to a user. In these diagrams layers that have direct utility

are colored gray, while layers that rely on higher layers for their utility are colored white.

Figure 5: All layers have functional dependencies on those below them. Gray layers have direct

utility, and white layers have utility dependencies on gray levels above them.

From the perspective of development these two types of dependency have two implications. The

first is that a missing functional dependency removes the utility from layers that depend on it,

since without a full stack the software can't run and the “gray” layer cannot deliver its utility to

the user. Figure 6 [p 22] shows this situation. The second implication is that there is no

restriction that lower layers cannot also have direct utility; it is not the case that all utility must

exist in the top layer alone. Figure 7 [p 22] illustrates this situation with two features of an

instant messaging client: buddy display and buddy search. Buddy search clearly depends on

being able to display buddies because without it search results can’t be displayed. Yet buddy

display is already useful on its own. Search has a functional dependency on display, but display

does not have a utility dependency on search. This is shown in these diagrams by stacking two

gray boxes on top of each other.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 22

Figure 6: Without a network stack, shown missing as a box without a border, an email client is

incapable of delivering its utility. The lack of utility is shown by giving the gray box a dotted line

Figure 7: Layers with direct utility can also be built upon, so that there is a functional dependency

without a utility dependency, shown with gray on gray.

Decision-making

Second, we consider the process of decision-making. Agents in rational choice models are

modeled as making a choice between alternatives, such as choosing which basket of products to

buy or which investments to make. The basic rational choice model is simple: agents assess the

benefits and the costs of each course of action (Eq. 1). Costs are understood as opportunity costs:

the lost benefit of the alternative not chosen. Eq. 2 shows the condition: that the benefits of the

choice exceed the benefits of the alternative.

Of course an agent cannot see the future; they can only make their decision on their expectations

of both the benefits and the costs of the action. We can therefore restate the decision equation, in

terms of the Utility derived from the outcome (Uoutcome,), adjusted for the probability that the

decision will lead to the desired outcome (Eq. 3).

(Eq. 1) Benefit > Cost (Eq. 2) Bchoice > Balternative

(Eq. 3) E(Bchoice) > E(Uoutcome) x E(P(success))

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 23

To model the impact of judgments about the likelihood of success, we build on the expectancy-

valence model of decision-making (Vroom, 1964), a process theory of motivation whose essence

is the suggestion that the “attractiveness of a particular task and the energy invested in it will

depend a great deal on the extent to which the employee believes its accomplishment will lead to

valued outcomes” (Steers et al., 2004). This theory was chosen as it matches well the

motivational introspection from participant observation, reported above.

Figure 8: Expectancy-Valence model of motivation. Adapted from (Samson and Daft, 2005, p.

534)

Figure 8 shows that there are two separate expectancies in this theory. The first is Expectancy-

Performance (E→P), which argues that the individual calculates the probability that effort will

lead to desired performance, P(e→p). The second is Performance-Output (P→O), which argues

that the individual also calculates the probability that performance will lead to the desired

outcome, P(p→o). The decision condition can thus be restated with all components being

expected values:

(Eq. 4) E(Bchoice) > E(Uoutcome) x E(P(e→p)) x E(P(p→o))

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 24

Stylized Facts and Assumptions

For analytical clarity, this section details a set of stylized facts and assumptions that are the basis

for the model, summarized in Table 4. These assumptions are based on the FLOSS research

literature and participant observation findings described above. Some assumptions will be

relaxed after the initial analysis.

Table 4: Stylized Facts and Assumptions
Bullets show assumptions which will be relaxed; right column shows justification

Participants only work for a utility payoff Bounded Rationality

Participants are good, but not perfect judges of task difficulty Bounded Rationality

Participants know the limitations of their judgment Bounded Rationality

Participants only know their free time a short period in advance Part. Observation.

Contributions are always shared under an open source license Part. Observation

Participants only derive utility from their own use of the software • Analytical Clarity

All participants have the same set of skills and free time • Analytical Clarity

There are no exogenous sources of code or solutions • Analytical Clarity

The model considers agents who are potential developers on a FLOSS project. As found in

participant observation, agents are assumed to have a limited amount of spare time, which is

outside their normal course of life—things such as paid work, family life, etc. It is assumed that

these agents use the software regularly outside their spare time, perhaps for work or study. This

regular use allows the agent to see opportunities to improve the software (and thereby the

effectiveness of the rest of their activities). Initially we assume this is their sole motivation. The

improvement in effectiveness is therefore the value of Uoutcome and is known to the agent.

Time in the model is divided in turns. The choice facing the agent in each turn is constrained to

be binary: they either choose to spend the turn attempting to contribute to a FLOSS project or

they choose not to. What they do with their spare time otherwise is immaterial, but this activity is

assumed to have a low but certain payoff.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 25

The model envisages agents making two estimates related to evaluation of the choice of coding

as an activity. First, they have to estimate whether their effort will result in the needed

performance, i.e., estimating P(e→p). The agents set their expectation of P(e→p) based on their

assessment of the chance that they will be able to complete the task within the time available. To

make this estimate, agents inspect the current codebase and make their best guess of the amount

of time it would take compared against the time they have available. For example, if the time

they had available was three hours and they just need to fix a spelling mistake, then their

estimate of P(e→p) would be very high. Contrariwise, if they needed to design a new spell

checking algorithm in that three hours, then the estimate of P(e→p) would be very low.

Having agents make this assessment requires further assumptions. Firstly, they are assumed to be

good, but not perfect, judges of their skill level. Secondly, agents are also assumed to be good,

but not perfect, judges of the complexity of the tasks, and are assumed to be good but not perfect

at understanding the current codebase. The agents are assumed to know their limitations.

Together these assumptions create a small chance of failure every time a developer undertakes a

task. At the stage of comparing complexity to time available, agents are assumed to know their

time availability for the length of the turn, but not beyond that. Agents are assumed not to rely on

possible future availability. Additionally, all agents are assumed to have the same level of skill.

This assumption will be relaxed below.

The second assessment that the agents make is to assess P(p→o), an assessment of the probability

that accomplishing the task set forth will enable them to use the application in such a way as to

unlock the utility that motivated them and achieve the expected rise in productivity. For the case

of individual work this is set to, and is expected to be, 1 (i.e. certain). This is an assumption that

the agent is able to use the application as anticipated.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 26

It is also assumed, at this stage, that there is no source of exogenous code or solutions; the

development effort of the developers is the only source of advancement for the project. This

rules out outsourcing through payment or the discovery of libraries of code from outside the

project. This assumption is an obvious simplification and will be relaxed below.

Finally, we assume that the agents all share their patches under an open source license. Why such

revealing takes place is outside the scope of this model. However, the use of an open source

license has three implications that together allow participants to build on other’s work

confidently: 1) derivative works are allowed, 2) no royalties must be paid and 3) contributions

are not revocable; the contributor cannot withdraw them. Together these factors mean that even

if a developer were to regret the decision to contribute, their contribution would remain freely

available and therefore agents do not have to expect continued cooperation from others. This

allows the superposition of new work on old to result in technical interdependence without

organizational interdependence.

Model analysis

With these assumptions and background, it is possible to consider an individual agent making a

code or no-code decision. On each turn, each agent consults their current set of motivating

opportunities and the current codebase to assess whether they can, given their skills and available

time, undertake a development task, making their best assessment of the easiest way to change

the codebase to achieve the desired outcome. If they estimate that the expected benefits of the

change outweigh the opportunity costs they begin work. If they successfully complete the work,

the result is available to all the other developers in the next turn. Participants return to the

codebase from time to time and reconsider work they previously rejected or failed to complete.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 27

Given a set of agents with varying time available and tasks with differing utility payoffs, we

consider implications for work in the project.

Figure 9: As development proceeds over time through superposition, functional

dependencies become backwards only dependencies. They depend only on what is
already present.

Individual, layered work can proceed: The simplest situation is that a participant inspects the

codebase and their set of desired features and finds a task which is sufficiently motivating, but

also within their abilities given the time known to be available to them. Such a situation is shown

in Figure 9, where a layer with utility (gray) is layered atop an existing layer with utility (also

gray). These situations can be called “backwards-only” dependencies: all that is relied on are the

results of actions already completed and certain: the current codebase and its permanent

availability. The FLOSS license assumption provides important safeguards for the payoff of such

work. If necessary layers could be removed in the future then the new code would lack its

functional dependencies and be unable to provide the utility desired by the developer. This

situation describes the case of a developer patching a proprietary piece of software—if and when

the software or its source availability changes, the patch can become unusable.

The “missing step” problem: A second possible situation is a participant inspecting the current

code base and their desires and judging that the work needed to implement a desired feature is

greater than their skills will allow them to accomplish in the time they know they have available.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 28

Figure 10: A missing functional dependency becomes a forwards and backwards dependency.

Figure 10 illustrates this situation with two separate layers, the desired New Feature and an

additional Needed Step, representing the increased amount of work needed to achieve the

goal. An individual agent under the assumptions given above will not try to implement both

layers at once as they expect to fail to finish in the time available, in the decision equation

E(P(e→p)) will be so low that not coding will always provide a higher expected return, even for

very large values of Uoutcome. Nor would it be rational for an agent to work on either layer in

isolation because without the white Needed Step layer, the payoff of the gray New

Feature layer is not available (a missing functional dependency) and without the potential to

finish the New Feature in the time available the Needed Step will not be built (since it is

missing a utility dependency). Since we assume that all participants have the same skills, they

face the same situation: the work will not be undertaken.

This situation reflects a fundamental dilemma in collaboration. It is a stylized and contextualized

way of restating a core problem of collective action: if the complexity of work is beyond the

individual capabilities of participants then some way to mitigate this must be found. The

following section models two solutions to this situation: collaboration through coordinating

multiple actors, which is well known, and productive deferral, which is believed to be novel.

Interdependent collaboration: A natural way to resolve this situation is to have agents

communicate and potentially make agreements between themselves. Agents may discover other

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 29

participants who are also motivated by the New Feature in Figure 10 [p 28]. Together they

can assess that if both of them work they can accomplish the work; one works on Needed

Step and the other on New Feature, as depicted in Figure 11. The capacity to work together

with both receiving the payoff opens the way to resolving the “missing step” dilemma.

Figure 11: The missing functional dependency can be added if two developers work concurrently,

although the risk of non-completion rises due to partner failure and coordination costs.

While this seems a reasonable solution even under the assumptions in place in this model such

collaboration introduces new risks that could undermine motivation and reduce volunteers’

participation in projects. First, collaboration introduces a new source of non-completion risk

because any collaborator also has a chance of failure, their P(e→p) is less than 1, and therefore

may not complete their part of the agreement, rendering the joint payoff unavailable (either

because a functional or a payoff dependency is unsatisfied). This situation can be incorporated

into the model as a change in the expectation of the second part of the risk term, E(P(p→o)), to

represent the risk that the expected outcome will not eventuate, regardless of the agent’s success

in initial performance. We represent this risk simply by setting each agent's E(P(e→p)) to their

collaborator’s E(P(p→o)). For example, if the individual likelihood of success for each developer

is 0.8, the overall chance of success for the two components combined is only 0.64, meaning that

the overall utility of the work would need to be substantially higher for the collaboration to seem

worthwhile.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 30

In addition, concurrent development introduces another well-known problem: the two layers

have to be designed to work with each other. In the model so far this integration has been

assumed to be trivial because developers have only been building on finished code that can be

easily inspected for fit. However, concurrent work is not available for inspection because it is

being simultaneously developed. This creates a usability coordination cost, which we model as

increased risk of non-completion (for either participant), decreasing P(e→p). Furthermore, these

costs are known to participants—and known to affect their partner—and are therefore transferred

to the expectation of the P(p→o) term, as above. We represent the probability of avoiding

misfitting work as θ. In this way each agent’s P(p→o) term becomes dependent on their

collaborator, making each agent’s decision condition:

(Eq. 5) E(Bchoice) > E(Uoutcome) x E(P(e→p)self x θ) x E(P(e→p)other x θ)

Since both agents have P(e→p) < 1and θ < 1, co-work will always be more risky than work

conducted through individual steps with immediate utility payoffs. This models for two

participants only, but there is nothing stopping larger numbers of participants agreeing to take on

even more complicated tasks together. However these sort of agreements are exponentially less

likely as the failure of any single individual undermines the payoff for all, and super-linearly

increases risk through extra coordination effort which is now between three or more

simultaneously developing components, rather than two.

This formal statement of the collaboration challenge explains the findings above of large

amounts of individual work: it is simply less risky and thus of higher expected payoff for the

participants. At the same time, some work will be perceived to be so worthwhile that attempting

co-work makes rational sense.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 31

Deferring difficult work: The above solution to the collaboration dilemma is well known.

However, a second possibility identified in the empirical work is for the developer to defer work

for the current turn, and wait to see how the codebase changes over time. It is possible that

through the independently motivated and executed work of others the desired New Feature

will become possible to implement with only individual work within the agent’s known free

time. In short the Needed Step simply appears and turns the collaborative dilemma into a

relatively simple backwards-only dependency.

What trickery is this? Above we argued that participants motivated by instrumental payoffs

would never build Needed Step, a layer without a utility payoff. It can't come from an

exogenous source, because we are currently assuming that these do not exist. How then does

Needed Step emerge?

The answer has to do with the extraordinary flexibility of software and the situated nature of the

developer’s cognition. Initially a task may seem to require work that is otherwise valueless (since

it has a utility dependency on as yet uncompleted work), but as other work—perhaps just

individual backwards-only work—changes the software over time, another way to build New

Feature may become apparent. Importantly, the changes would have been made for their own

sake, not as part of an interdependent plan to eventually build New Feature. This situation was

encountered by the first author in participant observation and depicted in Table 1 [p 11], where

the founder of BibDesk initially perceived the desirable task as too much work but considering it

from time to time until code—written for an entirely different reason—made the task easier

enough to undertake through relatively simple, quick and individual work.

In other words, the Needed Step/New Feature dilemma is not necessarily a hard fact—not

a “structural requirement” of a task (Wageman, 1995)—but the result of a developer’s cognition.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 32

And the cognition of developers—their estimation of the work needed to build New

Feature—is highly situated: it responds to the codebase as it is now, not to all possible

configurations of code. As the codebase changes, new and often surprising ways to accomplish

tasks emerge. In this way, as depicted in Figure 12, potentially problematic interpersonal

dependencies requiring trust and communication can be converted to two backwards-only

dependencies, each of which can be accomplished through individual work alone. This

transformation is central to layered collaboration.

Figure 12: A missing step dilemma can become two separate backwards-only
dependencies, if the missing functional dependency proves to have an alternative which

itself has a payoff. Note the elongated and indeterminate time scale.

Such “productive deferral” can be incorporated into the rational choice model. Deferred work

will be delayed, perhaps forever, which we model by applying a discount to the expected utility

of the feature. Note however that agents are not choosing to defer the work as an alternative to

both working and not-working; deferral does not take any time, so the benefits of not working or

of work on a different feature are still available. Note also that deferral is also not a commitment

on the behalf of the agent to undertake the work in future. In this way one can model the decision

as between (a) working uncertainly now and likely failing and (b) doing something else now and

possibly working more easily later. In some quite conceivable circumstances such deferral would

be rationally preferred to collaboration: the combined effects of uncertainty and delay offset by

the immediate benefit of doing something else only need be lower than the multiplicative

combination of collaboration risks shown above.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 33

There is no need to over-state this point: it is enough that deferral can and does happen. Certainly

it does not always happen and for some types of tasks it undoubtedly never happens. Even when

it might there is no way to estimate before the fact when the deferred task might eventually be

accomplished. Deferring work is far from a replacement for collaboration: it is at best slow and

from an traditional management perspective might be totally ineffective, especially in

circumstances where it is vital that features be implemented in a timely manner (as we discuss

below). Nonetheless, deferral is a novel solution to the collaboration dilemma; it is one that is in

keeping with the motivational environment of FLOSS development and the affordances of the IT

artifact as an object of collaboration.

Model Extensions

This model presented above is useful but simple; a number of extensions are immediately

apparent. Here we consider just three, designed to consider the impact of three empirical aspects

of FLOSS discussed in the literature: firstly, participants in FLOSS projects have different areas

of expertise and skill/productivity levels; secondly, FLOSS projects can make use of exogenous

sources of code; and thirdly, participants are known to be motivated by more than the simple

instrumentality of the software.

Unequal skill distribution: First, the model above assumes that all participants have the same

skills and productivity; this assumption can be relaxed by modeling skill as a distribution. The

immediate impact of this change is to allow the existence of developers for whom the

implementation of Needed Step and New Feature (from Figure 10 [p 28]) can be done in

a single step. For example, the developer might have experience of Needed Step, e.g.,

through work on another program, and therefore able to implement it quickly, or simply have

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 34

superior skills and productivity sufficient to complete both of the steps in the free time they

know they have available to them.

Relaxing this assumption leads to a more realistic model where some tasks are hard for some

developers but easy for others. Indeed it is often said that programming is conspicuous for order

of magnitude variance in programmer productivity (e.g., Brooks, 1975). The work of highly

productive coders could make leaps on which other developers can build smaller but still useful

contributions. A diversity of skill levels also changes the calculation of risk in collaboration,

since one developer might have less chance of failure than the other and others might be

relatively happier to co-work with them.

Under this assumption, a project can speed through some Needed Step dilemmas, provided a

developer exists for whom the task is comparably easy and for whom it provides sufficient

utility. This observation points to the importance of continual recruitment, above and beyond

added generic effort: by widening the diversity of contributors the project has more chance of

solving larger and more complicated tasks even if contributors cannot contribute large amounts

of time. Having uncommonly productive members might also assist the project by making

deferral more effective for other members by keeping the codebase changing in ways that might

make complex work easier. For such reasons it might be appropriate for the project to be more

concerned about attracting new, skilled participants than organizing in ways that make most

efficient use of the spare time of existing participants, a trade off similar to that observed in

listserv-based online communities (Butler, 2001).

Exogenous change: FLOSS projects do not exist on their own; rather they are part of an

ecosystem of software and other projects. Although differing licenses reduce the possibility of

code movement between some projects, developers have a great deal of software at their

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 35

disposal. This is especially true of libraries, which are packaged and documented for re-use and

can provide significant functional services. By relaxing the assumption that no solutions or code

are exogenously available it is possible for individual developers to overcome the Needed

Step dilemma by recognizing a library as providing the step, adapting it and pursuing New

Feature in their known free time. The developer, therefore, is assessing not just the current

codebase but also the part of the whole ecosystem of (license compatible) FLOSS code known to

them. Further, libraries are designed to be integrated and provide “bundles” of potential features.

As found in the study of Gaim and Fire above, their addition can spark new rounds of creativity

amongst developers, perhaps enabling tasks that were too complex earlier and therefore deferred

or which were not even conceived until the addition of the library.

Reputation and Learning motivations: Finally, the literature on FLOSS motivations is clear:

instrumental motivations (for the software itself) are important but are not the only drivers of

activity. Two other motivations stand out: reputation and learning, as key examples of

instrumental and experiential motivations, respectively.

The importance of reputation is perhaps stronger in the conceptual literature than in the empirical

literature, but is nonetheless important because it could motivate developers to take on tasks

without certainty of completion or immediate payoff. If the project carefully assigns credit,

individuals can increase their reputations by taking on tasks that are known to be collectively

valuable but which are not otherwise motivating. An example of this situation might be tasks

such as managing infrastructure or undertaking the infrastructural work represented by Needed

Step above. Having developers motivated by reputation enables projects to proceed through

Needed Step blockages without resorting to work with direct interpersonal interdependencies,

still working only through layered individual work.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 36

Yet reputation seems likely to be important for co-work as well, since reputation can be

understood as revealed quality and commitment. Since participants can see the public successes

of other's efforts (and are relatively shielded from their private failures) they may be more

willing to trust others and enter into agreements co-work. On the other hand, reputation takes

time to build, so is unlikely to be operative in the very early stages of a project. Only once the

project has established itself as well-known and valuable can reputation have value outside the

project itself (Roberts et al., 2006).

Learning is part of a set of experiential motivations that also includes sheer enjoyment of the.

Intrinsic motivations are significant because they change the types of payoffs permitted, allowing

participants to implement steps that were previously ruled out because they did not provide

immediate functional payoffs. This effect has the helpful result of turning a step with

functionality but no immediate instrumental utility (a ‘white’ box) into step where the payoff is,

for example, the learning the developer anticipates during their attempt (a ‘gray’ box). Such

alternative payoffs allow experientially motivated developers to choose to implement gaps, such

as Needed Step, only because they will learn from the activity, regardless of whether they, or

someone else, ever implements the New Feature that has a functional dependency on the

Needed Step .

Furthermore experiential motivations mean that even ultimately unsuccessful work has value to

the developer, since one can learn from failure, or simply enjoy the process. This reduces the

perceived risk for the developer: one might say, “hey, I'll give it a try and even if it doesn't work

out I'll at least have learnt something”. Given also the ability to communicate, and thereby get

opportunistic coaching from an interested and skilled community, coding to learn appears to be a

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 37

very powerful motivator; indeed Larry Wall, the founder of the Perl project calls open source

development, “learning in public”.

Such motivations could be incorporated in the model by adding (not multiplying) a new term to

Eq. 4 on the benefit side, reflecting the expected utility of the experience itself, E(Uexperience).

Since it is additive this term is unaffected by the risk of failure or any of the multiplicative risks

of collaboration and will make work more likely to be undertaken. Successful work done for

experiential reasons can bridge motivational gaps in the project and such work can provide layers

that make the work of other participants much easier, supporting a whole new raft of backwards-

only tasks. This analysis helps to clarify why experiential motivations are so important to

volunteer work—they make it possible to motivate contributors to work on tasks from which

they derive no instrumental benefits.

DISCUSSION

The theory developed in this paper emphasizes how much can be accomplished without risky

interdependent collaboration (particularly when intrinsic motivations, such as learning, are

considered) and describes a novel solution to the collaboration problem: productive deferral. The

model of organizing presented in this paper is entwined with affordances of IT artifacts, four of

which are highlighted below. Understanding these better improves analysis of the challenges in

adapting FLOSS organizing for other work, including the traditional IS function.

Collaboration affordances of the IT artifact

The theory presented in this paper rests in part on the affordances of software as a type of IT

artifact. This argument is similar in form to other theories of IT affordances and organizing (e.g.,

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 38

Dennis et al., 2008), but novel in that it emphasizes the IT artifact as an object of work, rather

than as a communication medium.

Layerability: As described above, software has the affordance that it can be built in relatively

small layers and additions can be integrated as they arrive. Further, layers can have independent

payoffs, even for very small additions (such as adding a search function). The ability to build

complex, technically interdependent work in immediately motivating layers over time is very

important to the theory presented in this paper. However, it is clear that much work is not like

this. For example an airplane certainly can be built in steps: first the fuselage, then the engines,

and finally the wings. But until it is complete none of these steps provide any utility payoff.

Small steps added to an existing base, each with their own sufficient instrumental payoff

(forming “stackable incentives”1), seems to be particular to informated work (in the sense of

Zuboff, 1989).

Low instantiation costs: By instantiation costs we mean the costs of moving from a design to a

useful artifact (and not the process of creating the design). For software this is moving from

software code to a running application and is very cheap, simply requiring a computer and a

compiler. For other work, however, such as building a house, this can be very expensive. While

one could conceive of a community collectively altering and layering a digital design for a house

(or car, see below), the fact that there is a comparatively high cost of applying such alterations to

the finished artifact means that the use value of the changes is very hard to realize, undermining

the types of motivation seen in FLOSS projects. This characteristic is very important for

collaboration through superposition; if it is expensive to rebuild the existing work to place your

1 We are indebted to an interlocutor at a conference for this pithy phrase. Unfortunately, despite many attempts, we have been
unable to identify them to thank them by name.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 39

new layer upon, then adding that layer is itself very expensive. Adding a room onto an already

functional house does not duplicate the entire house.

Distribution costs: The Internet has drastically reduced distribution costs for software, which is

usually delivered via the network at no marginal bandwidth cost for the user. Low distribution

cost allows small layers to spread out to the community and provide the basis for other’s work.

Prior to Internet software delivery, updates involved printing CDs (or copying tapes) and

shipping them to customers, a much more expensive proposition. Extremely low instantiation

and distribution costs are very important to the model of collaboration presented in this paper

and are a characteristic of IT artifacts as an object of collaboration.

Rewindability: Thirdly software is rewindable: as participants add layers they do not commit

the entire project to retaining them forever (even while giving up the right to remove them

unilaterally). Changes can be undone, especially when source code management systems like

CVS are used. Even when another developer commits a change to a shared source code tree, it is

possible for others to decide whether they will include those changes in their compiled

application. This characteristic is quite unlike the great majority of work in which actions and

their impacts are hard or impossible to reverse, in non-informated production (summarized in the

advice to “measure twice and cut once”) and in services, such as financial advice or customer

service. If actions are not easily reversible, trust in other contributors becomes a much more

important issue. Gallivan (2001), a meta-analysis of FLOSS case studies, highlighted as

surprising the finding that trust was not a commonly discussed element of FLOSS organization,

suggesting that control must be playing the missing role. The model presented in this paper,

however, suggests that with a rewindable and non-revocable IT artifact as the object of

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 40

collaboration, neither trust nor control is as important for collaboration as has hitherto been the

case.

Very low financial costs: Fourthly, FLOSS projects are able to exist without special financial

investment, resisting the deadline pressures that necessarily accompany it. Community-based

software projects are able to take advantage of a set of collaboration tools, from email to

download hosting to bug trackers and versioned software repositories, which are almost always

free software. As such the costs to set up a project, host it and to make it available for others to

discover and build upon are so low as to be irrelevant. While service providers such as

Sourceforge do play an important role in facilitating this, and do bear bandwidth costs offset by

advertising and demonstration of their technological platforms, many FLOSS projects are able to

host their own infrastructure, using excess capacity in personal or business connections.

Low costs means that projects can begin without investing money, can take on new participants

without marginal financial costs and can persist indefinitely. This means that the future of the

project is not contingent on the sustained provision of financing. Investment—even non-profit

oriented investment—has opportunity costs, especially the time-cost of money which entails

deadline pressures. When deadlines are important then the tactic of productive deferral is of

reduced usefulness and there may be no alternative to working with interpersonal dependencies

and therefore bearing the risks and costs outlined above. In the long run, however, slow moving

but sustainable projects may out-perform those relying on interdependency.

Challenges for Adaptation

Much of the interest in FLOSS and its development stems from the difficulties encountered in IS

development, even when co-located, together with difficulties encountered in distributed work

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 41

more generally, especially when crossing organizational boundaries. FLOSS seems to solve

these two difficulties by combining them and do so without needing financial investment; a truly

remarkable achievement, raising the hope that many useful lessons for conventional development

can be extracted from the FLOSS model of organizing (Agerfalk and Fitzgerald, 2008; von

Krogh and von Hippel, 2006). Yet the theory presented in this paper, particularly the

fundamental role of affordances of IT artifacts, suggests limits and contingencies to this

adaptability. The remainder of this section demonstrates the usefulness of the theory developed

in this paper by examining attempted adaptations.

Adaptation of a layered model of development seems likely to be most successful in areas that

have similar technological affordances. Wikipedia was inspired by FLOSS development; at its

center is an IT artifact—the wiki—that can effectively be built in layers and where contributions

are non-revocable and strongly rewindable. However, instantiation and distribution costs are

higher for Wikipedia, despite its informated nature. These costs are higher because the database

is stored centrally and each use is its own episode of instantiation and distribution, requiring

central server time and bandwidth. In this way a contribution to Wikipedia requires continual

maintenance costs if it is to deliver any use value. Bearing these financial costs is a key function

of the Wikipedia Foundation and is funded by substantial philanthropy.

Open Hardware is a label applied to efforts to draw on techniques from FLOSS to build

hardware, rather than software. The aim of the Open Hardware movement, in projects such as the

Simputer and OScar (Open Source Car), is to radically lower the cost of hardware and to

radically increase the speed of innovation. These projects have not yet achieved remarkable

successes. The primary impediment is that hardware has high instantiation and distribution costs.

A circuit board must be designed before it is printed and transported to where it is needed; all

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 42

this must happen before, not during, the integration process for any new feature or bug fix. For

this reason Open Hardware projects have generally proceeded in two ways: The first is focusing

on the design stage, sharing schematics and other documents. However these are not directly

useful, so there is a clear unsatisfied utility dependency. The second is to take advantage of the

increasing informating of hardware through downloadable firmware or hardware that is more

like software, such as Field Programmable Gate Arrays. This strategy has been more effective

because it essentially turns hardware into software, but the strategy is not always available.

By far the most hoped for adaptation of the FLOSS form of organizing is for productive

hybridization with the IS function of for-profit enterprises. This hope has taken two main

forms. The first is sometimes known as “inner source” (e.g., Dinkelacker et al., 2002), where a

firm attempts to generate an open source community within its corporate boundaries, examples

include HP and the US DoD’s forge.mil. The second is to integrate FLOSS components into the

firm’s IS strategy, both for internal IS and for the production of IS for sale (Agerfalk and

Fitzgerald, 2008).

The Inner Source strategy presents significant adaptation challenges. It is relatively simple to

replicate the IT infrastructure of FLOSS inside a corporation; indeed selling such systems was

part of the business models of Sourceforge and Collab.Net. Yet unsurprisingly given the history

of IS scholarship (e.g., Desanctis and Poole, 1994; Orlikowski, 1992), simple importation of

technology is not sufficient to replicate a socio-technical phenomenon and Inner Source struggles

with two key issues.

The first issue is that individual instrumental motivations are de-emphasized since corporate

groups usually build for audiences outside the development team, including external customers.

Experiential motivations, such as learning and fun, are undermined since individuals rarely

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 43

decide the direction of their own work. This leaves Inner Source efforts in much the same

motivational and payoff quandary faced by internal knowledge management systems (e.g., Bock,

2005; Kankanhalli, 2005).

The second issue is that firms, due to upfront investment, inherently face deadlines, undermining

the usefulness of productive deferral. In these circumstances Inner Source seems most likely to

work in two circumstances: those able to sustain a “free time” culture of exploration and learning

and those that have significant non-marketed infrastructure needs which meeting can save

sufficient money to pay developers directly. In this second case, however, limiting the

community to just those inside the corporation does not seem necessary. Extending such

communities beyond the boundaries of the firm has seen success in IBM’s founding and

extension of the Eclipse community.

Other than Inner Source, a second strategy is for firms to adapt FLOSS production into their IS

function. The success of this strategy depends in part on the extent to which a firm can be a

relatively passive consumer of the project, or whether their strategy requires them to actively

develop the code (e.g., Agerfalk and Fitzgerald, 2008; Fitzgerald, 2006; Shah, 2006). The first

case is problematic only to the extent of ensuring that the FLOSS licenses match corporate

strategies; the theory in this paper does not speak to this issue and clearly many organizations are

able to find appropriate matches and use FLOSS software.

If, however, the corporate strategy requires active influence over the project and its codebase

there can be significant challenges. Clearly corporate collaboration with FLOSS projects is

possible; in fact there are many highly successful examples, such as IBM working with the

Apache Foundation, replacing their internally developed web server (WebSphere) with Apache’s

httpd. Yet the theory articulated in this paper helps to clarify the issues that need to be resolved.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 44

The theory speaks most clearly to whether or not the firm can afford to “fit in” with small layers

and deferral of complex work or whether their market imperatives generate deadlines and a

strategic need for secrecy.

The case of Apple’s Safari browser, based on the open source khtml project, illustrates

difficulties in this approach. Apple’s market strategy called for high secrecy during product

development, and market pressures place a strong premium on rapid time to market. Under the

LGPL license Apple was within their legal rights to work in secret; they only had to release their

modifications once Safari was distributed. Yet secrecy was not the only driver. By taking the

work in-house Apple was able to move much more quickly than the khtml project, short

circuiting slow processes of layering and deferral, solving complexity through presumably high-

trust, face-to-face interdependent work within their internal programming teams. When Apple

released Safari they did indeed release their source code modifications, and announced a desire

to work with the khtml community in future, thus sharing on-going maintenance and

development costs. Yet the members of the khtml project were displeased, as illustrated by the

quotation from a khtml developer in Table 5. Apple’s the modifications were too large and had

branched from khtml too long ago for them to be easily integrated; their work had not proceeded

in observable, short and evolutionary layers.

Do you have any idea how hard it is to be merging between two totally different trees when one of them
doesn't have any history? That's the situation KDE is in. We created the khtml-cvs list for Apple, they got
CVS accounts for KDE CVS. What did we get? We get periodical code bombs in the form of them
releasing WebCore. … They do the very, very minimum required by LGPL.

And you know what? That's their right. They made a conscious decision about not working with KDE
developers. All I'm asking for is that all the clueless people stop talking about the cooperation between
Safari/Konqueror developers and how great it is. There's absolutely nothing great about it. In fact "it"
doesn't exist. Maybe for Apple - at the very least for their marketing people. Clear?

Table 5: Quotation from khtml developer (http://www.kdedevelopers.org/node/1001)

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 45

This story stands in strong contrast to IBM’s adoption of Apache’s httpd web server. For IBM

there was no need for secrecy, since IBM was generating its revenue from services and higher-

value added software. Further, the httpd server was already capable enough that IBM was able to

fit in with the FLOSS model of working in small, visible steps. The contributions of the IBM

developers keep the project active, and may provide volunteer participants with the sorts of

“missing steps” that make their work easier. This might even attract additional volunteers, as

recently found in a study of corporate impact on the Gnome community (Wagstrom et al., 2010).

Without the active collaboration and support of the community the firm is not able to unlock the

promises of “outsourcing to an unknown workforce” (Agerfalk and Fitzgerald, 2008). Firms

seeking to drive projects forward by taking complex work in-house, especially in secret, should

expect to face similar significant difficulties.

CONCLUSION AND CONTRIBUTION

The theory and empirical work presented in this paper makes useful and significant

contributions, albeit not without limitations. The primary limitation is the decision to trade

empirical generalizability beyond three specific FLOSS cases from the mid 2000s for the depth

needed for theory development. Nonetheless this work is the first to draw together the

motivations of participants, the technologies of collaboration and the experience and

organization of production into a novel theory with practical implications for research and

practice in the fields of Information Systems and Organization Science.

The work makes a contribution to Information Systems because it is a socio-technical theory of

organizing where the detailed affordances of IT artifacts play a central role. The theory has

implications for the adaptability of FLOSS methods to traditional IS development and for the

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 46

interaction of the IS function in organizations with FLOSS communities. A contribution is also

made to Organizational Science because a new theory of organizing is described and analyzed,

where the task does not structurally determine the appropriate way to organize, but rather

appropriate organization is emergent, shaped by the volunteer resource context and flexible

technologies of production and collaboration. Finally the concept of “productive deferral” is

believed to be novel and may find application in other organizational domains.

This paper began with the observation that the success of FLOSS and other forms of open

collaboration is surprising because they face two challenges to organizing: working at a distance

and working with volunteers. Working at a distance, outside formal organizations, already

sacrifices many traditional sources of control and motivation. Relying on self-motivated

volunteers reduces the importance of these; the challenge then is to find a way to organize that

draws together relatively independent work into a cohesive and valuable whole, while

maintaining a fertile ground for volunteerism. The argument of this paper is that the IT artifact as

an object of collaboration affords a solution to this challenge, providing the bedrock on which

the superposition of small, self-motivated layers over time can build valuable artifacts and

provide mutual inspiration, albeit at the cost of uncertain delay.

Working in this way might be frustrating slow and uncertain from a traditional management

perspective that seeks to do more with known, expensive and thus coercible resources. Yet if the

challenge is to attract and retain volunteer resources, this way of working makes clear sense.

Understanding this is vital to pursuing successful adaptation or hybridization. This way of

working is remarkable because the IT artifact—as an object of collaboration—affords not merely

doing the same thing faster or more cheaply but a whole new way of collaborating.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 47

REFERENCES

Agerfalk, P. J., and Fitzgerald, B. 2008. “Outsourcing to an Unknown Workforce: Exploring
Opensourcing as a Global Sourcing Strategy,” MIS Quarterly (32:2), pp. 409.

Baldwin, C. Y., and Clark, K. B. 2006. “The Architecture of Participation: Does Code
Architecture Mitigate Free Riding in the Open Source Development Model?,”
Management Science (52:7), pp. 1116–1127.

Benbasat, I., and Zmud, R. W. 2003. “The identity crisis within the IS discipline: Defining and
communicating the discipline's core properties,” MIS Quarterly (27:2), pp. 183-194.

Bock, G. 2005. “Behavioral Intention Formation in Knowledge Sharing: Examining the Roles of
Extrinsic Motivators, Social-Psychological Forces, and Organizational Climate,” MIS
Quarterly (29:1), pp. 111.

Brooks, F. P. 1975. “The Mythical Man-Month: Essays on Software Engineering,” Addison-
Wesley Pub Co., pp. 13–29.

Butler, B. S. 2001. “Membership Size, Communication Activity, and Sustainability: The Internal
Dynamics of Networked Social Structures,” Information Systems Research (12:4), pp.
362.

Capiluppi, A., and Michlmayr, M. 2007. “From the Cathedral to the Bazaar: An Empirical Study
of the Lifecycle of Volunteer Community Projects,” In Open Source Development,
Adoption and InnovationIFIP International Federation for Information Processing, J.
Feller, B. Fitzgerald, W. Scacchi, and A. Sillitti (eds.), (Vol. 234) Boston, USA:
Springer, pp. 31-44.

Conley, C. A., and Sproull, L. 2009. “Easier Said than Done: An Empirical Investigation of
Software Design and Quality in Open Source Software Development,” In Proceedings of
the 42nd Annual Hawai'i International Conference on System Sciences (HICSS).

Crowston, K., Howison, J., and Annabi, H. 2006. “Information systems success in free and open
source software development: Theory and measures,” Software Process: Improvement
and Practice (11:2), pp. 123-148.

Crowston, K., and Malone, T. 1988. “Information Technology and Work Organization,” In
Handbook of Human-Computer Interaction, M. Helander (ed.), Elsevier Science
Publishers, pp. 1051–1069.

Crowston, K., Wei, K., Li, Q., Eseryel, U. Y., and Howison, J. 2005. “Coordination of
Free/Libre Open source software development,” In ICIS 2005. Proceedings of
International Conference on Information Systems 2005Las Vegas, NV.

Daft, R. L., and Lengel, R. H. 1986. “Organizational Information Requirements, Media Richness
and Structural Design,” Management Science (32:5).

Daniel, S. L., and Diamant, E. I. 2008. “Network Effects in OSS Development: The Impact of
Users and Developers on Project Performance,” In ICIS 2008 Proceedings.

Dennis, A. R., Valacich, J. S., and Fuller, R. M. 2008. “Media, Tasks, and Communication

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 48

Processes: A Theory of Media Synchronicity,” MIS Quarterly (32:2).

Desanctis, G., and Poole, M. S. 1994. “Capturing the Complexity in Advanced Technology Use:
Adaptive Structuration Theory,” Organization Science (5), pp. 132.

Dinkelacker, J., Garg, P. K., Miller, R., and Nelson, D. 2002. “Progressive Open Source,” In
Proceedings of ICSE '02Orlando, FL.

Dunlop, J. J. 1990. “Balancing Power: How to Achieve a Better Balance between Staff and
Volunteer Influence,” Association Management (January).

Feller, J., Fitzgerald, B., Hissam, S., and Lakhani, K. 2005. Perspectives on Free and Open
Source Software, Cambridge, MA: MIT Press.

Fitzgerald, B. 2006. “The transformation of Open Source Software,” MIS Quarterly (30:4).
Gallivan, M. J. 2001. “Striking a Balance between Trust and Control in a Virtual Organization:

A Content Analysis of Open Source Software Case Studies,” Information Systems
Journal (11:4), pp. 277–304.

Ghosh, R. A., Robles, G., and Glott, R. 2002. Free/Libre and Open Source Software: Survey and
Study FLOSSUniversity of Maastricht: Netherlands: International Institute of Infonomics.

Hahn, J., Moon, J. Y., and Zhang, C. 2008. “Emergence of New Project Teams from Open
Source Software Developer Networks: Impact of Prior Collaboration Ties,” Information
Systems Research (19), pp. 369-391.

Handy, C. 1988. Understanding voluntary organizations, London: Penguin Books.

Herbsleb, J. D., Mockus, A., Finholt, T. A., and Grinter, R. E. 2001. “An empirical study of
global software development: Distance and speed,” In the International Conference on
Software Engineering (ICSE 2001)Toronto, Canada, pp. 81–90.

Hertel, G. 2007. “Motivating job design as a factor in open source governance,” Journal of
Management and Governance (11), pp. 129–137.

von Hippel, E., and von Krogh, G. 2003. “Open Source Software and the `Private-Collective'
Innovation Model: Issues for Organization Science.,” Organization Science (14:2), pp.
209–223.

Kankanhalli, A. 2005. “Contributing Knowledge to Electronic Knowledge Repositories: An
Empirical Investigation,” MIS Quarterly (29:1), pp. 143.

Kaplan, A. 1964. The Conduct of Inquiry: Methodology for Behavioral Science, Transaction
Publishers.

Ke, W., and Zhang, P. 2008. “Participating in Open Source Software Projects: The Role of
Empowerment,” In Proceedings of ICIS08 HCI Workshop.

von Krogh, G., and von Hippel, E. 2006. “The Promise of Research on Open Source Software,”
Management Science (52:7), pp. 983.

Lakhani, K., and Wolf, R. G. 2003. Why hackers do what they do: Understanding motivation
efforts in Free/F/OSS projects (Working Paper No. 4425-03), MIT Sloan School of
Management.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 49

Lakhani, K., and von Hippel, E. 2003. “How open source software works: “free” user-to-user
assistance,” Research Policy (32), pp. 923–943.

Lerner, J., and Tirole, J. 2002. “Some simple economics of Open Source,” Journal of Industrial
Economics (52:2), pp. 197–234.

Lipnack, J., and Stamps, J. 1997. Virtual teams: Reaching across space, time and organizations
with technology., New York, NY: John Wiley and Sons, Inc.

Luthiger, B., and Jungwirth, C. 2007. “Pervasive fun,” First Monday (12:1).

MacCormack, A., Rusnak, J., and Baldwin, C. Y. 2006. “Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and Proprietary Code,”
Management Science (52:7), pp. 1015-1030.

Malone, T., and Crowston, K. 1994. “The interdisciplinary theory of coordination,” ACM
Computing Surveys (26:1), pp. 87–119.

Markus, M. L., and Robey, D. 1988. “Information Technology and Organizational Change:
Causal Structure in Theory and Research,” Management Science (34:5).

Michlmayr, M. 2004. “Managing Volunteer Activity in Free Software Projects,” In Proceedings
of the 2004 USENIX Annual Technical Conference, FREENIX Track Boston, USA, pp.
93-102.

Mockus, A., Fielding, R. T., and Herbsleb, J. D. 2002. “Two Case Studies Of Open Source
Software Development: Apache And Mozilla,” ACM Transactions on Software
Engineering and Methodology (11:3), pp. 309–346.

O'Mahony, S., and Ferraro, F. 2007. “Governance in Collective Production Communities,”
Academy of Management Journal (50:5), pp. 1106.

Olson, G. M., and Olson, J. S. 2000. “Distance matters,” Human-Computer Interaction (15), pp.
139–179.

Orlikowski, W. J. 1992. “Learning from Notes: organizational issues in groupware
implementation,” In CSCW '92: Proceedings of the 1992 ACM conference on Computer-
supported cooperative work.

Orlikowski, W. J., and Iacono, C. S. 2001. “Research Commentary: Desperately Seeking the 'IT'
in IT Research: A call to theorizing the IT Artifact,” Information Systems Research
(12:2), pp. 121-145.

Parnas, D. L., Clements, P. C., and Weiss, D. M. 1981. “The modular structure of complex
systems,” IEEE Transactions on Software Engineering (11:3), pp. 259-266.

Roberts, J. A., Hann, I., and Slaughter, S. A. 2006. “Understanding the Motivations,
Participation, and Performance of Open Source Software Developers: A Longitudinal
Study of the Apache Projects,” Management Science (52:7), pp. 999.

Samson, D., and Daft, R. 2005. Management - Pacific Rim Second Edition, Sydney, Australia:
Thomson.

Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., and Lakhani, K. 2006. “Guest Editorial:
Understanding Free/Open Source Software Development Processes,” Software Process:

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 50

Improvement and Practice (11:95-105).

Schach, S. R., Jin, B., Wright, D. R., Heller, G. Z., and Offutt, A. J. 2003. “Determining the
Distribution of Maintenance Categories: Survey versus Measurement,” Empirical
Software Engineering (8:4), pp. 351-365.

Shah, S. K. 2006. “Motivation, governance, and the viability of hybrid forms in open source
software development,” Management Science (52:7), pp. 1000–1014.

Shea, G. P., and Guzzo, R. A. 1987. “Group effectiveness: what really matters?,” Sloan
Management Review (28:3), pp. 25-31.

Steers, R. M., Mowday, R. T., and Shapiro, D. L. 2004. “The Future of Work Motivation
Theory,” Academy of Management Review (29:3), pp. 379–387.

Stewart, K. J., and Gosain, S. 2006. “The Impact of Ideology on Effectiveness in Open Source
Software Development Teams,” MIS Quarterly (30:2).

Thompson, J. D. 1967. Organizations in Action: Social Science Bases of Administrative Theory,
New York: McGraw-Hill.

Van de Ven, A. H., Delbecq, A. L., and Koenig, R. 1976. “Determinants of Coordination Modes
Within Organizations,” American Sociological Review (41:2), pp. 332–338.

Vroom, V. H. 1964. Work and Motivation, New York, NY: Wiley.

Wageman, R. 1995. “Interdependence and group effectiveness,” Administrative Science
Quarterly (40:1), pp. 145-180.

Wageman, R., and Gordon, F. M. 2005. “As the Twig Is Bent: How Group Values Shape
Emergent Task Interdependence in Groups,” Organization Science (16:6), pp. 687–700.

Wagstrom, P., Herbsleb, J. D., Kraut, R. E., and Mockus, A. 2010. “The Impact of Commercial
Organizations on Volunteer Participation in an Online Community,” In Presentation at
the OCIS Division, Academy of Management Conference.

Wasko, M., and Faraj, S. 2005. “Why Should I Share? Examining Social Capital and Knowledge
Contribution in Electronic Networks of Practice,” MIS Quarterly (29:1), pp. p35 - 57.

Weick, K. E. 1989. “Theory construction as disciplined imagination,” Academy of Management
Review (14), pp. 516 –531.

Weick, K. E. 1995. “What Theory is Not, Theorizing Is,” Administrative Science Quarterly
(40:3), pp. 385-390.

Yamauchi, Y., Shinohara, T., and Ishida, T. 2000. “Collaboration with Lean Media: How Open-
Source Software Succeeds,” In Proceedings of Computer Support Collaborative Work
2000 (CSCW 2000).

Zuboff, S. 1989. In The Age Of The Smart Machine: The Future Of Work And Power, Basic
Books.

Howison and Crowston Collaboration through superposition

Working Paper—Not for citation 51

APPENDIX

Coding scheme for Actions, inductively developed

Code Explanation and Example

Management codes

Management work Work done to organize other work. This includes planning, setting deadlines
or announcing 'phases' like code/string freezes, assigning or rejecting tasks.
This includes re-structuring the infrastructure and declaring bugs fixed, or
Patches applied (closing Trackers)

Assigning credit Thanking people, adjusting the Credits file etc.

Review codes

Validation work Validating a coding technique, fix or approach (before or while it is being
done)

Review work Work done to review other work, including checking in code written by
others. This includes work that rejects patches etc.

Production codes

Core production work Work that directly contributes to the project's outcomes; either through
working application code, or through production of user interface elements
(logos etc). e.g.: Implementing a feature (not necessarily a check in, since
could be checked in on behalf of someone else)

Polishing production work Smaller changes that polish Core Production contributions e.g.: typos,
integrations etc

Documentation codes

Documentation work Work that documents the code, application or activities. Includes pointers
across Venues (e.g. in a Bug Tracker saying that a Patch has been
submitted)

Self-Planning work Work that documents one's own future activities (planning others’ work is
Management Work)

Supporting codes

Use information provision Providing or seeking information about using the software e.g.: use cases,
often RFEs and bug reports.

Code information
provision

Providing or seeking suggestions about the code, including how to complete
work (code examples or pseudo-code, if it compiles or is a patch against
SVN then code Production Work). This includes a developer seeking more
information from a peripheral member.

Testing work Testing application functionality. This includes requesting more information
from users in bug reports.

