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Validity issues in the use of social network analysis with 
digital trace data 

1. Abstract 

There is an exciting natural match between social network analysis methods and the 

growth of data sources produced by social interactions via information technologies, 

from online communities to corporate information systems. Information Systems 

researchers have not been slow to embrace this combination of method and data. Such 

systems increasingly provide “digital trace data” that provide new research opportunities. 

Yet digital trace data are substantively different from the survey and interview data for 

which network analysis measures and interpretations were originally developed. This 

paper examines ten validity issues associated with the combination of data digital trace 

data and social network analysis methods, with examples from the IS literature, to 

provide recommendations for improving the validity of research using this combination.  
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2. Introduction 

There is an exciting natural match between Social Network Analysis (SNA) and the 

growing phenomenon of social interaction through digital platforms and technologies, 

from online communities to corporate information systems (Agarwal, Gupta, & Kraut, 

2008). This match offers a combination of exciting phenomena, interesting research 

questions, appropriate analysis techniques and the availability of copious data. Agarwal 

et al. (2008) put it thus: "Most transactions and conversations in these online groups 

leave a digital trace ... this research data makes visible social processes that are much 

more difficult to study in conventional organizational settings." The availability of such 

trace data, together with exciting domains and an appropriate analysis technique, form a 

golden opportunity for research, perhaps even a “21st Century Science” (Watts, 2007). 

The discipline of Information Systems has not been slow in recognizing and exploring 

this natural match. Rice (1990) laid out an early case explicitly:  

“The fact that CMC systems can unobtrusively collect data on usage, flows, and content 

from a full census of users provides researchers with new opportunities for understanding 

the application, management, and consequences of such systems. A theoretically 

appropriate analytical approach is network analysis of CMC system data.” (p. 643). 

Information Systems researchers have taken up this opportunity, undertaking innovative 

research on a variety of topics, from group cohesion (e.g., Hahn, Moon, & Zhang, 2008), 

trust (e.g., Ridings, Gefen, & Arinze, 2002), knowledge generation (e.g., Wasko & Faraj, 

2005), information diffusion (e.g., Hinz & Spann, 2008) and productivity (e.g., Aral, 

Brynjolfsson, & van Alstyne, 2006) in a wide range of domains, including virtual 

collaborations (e.g., Ahuja & Carley, 1999), Wikipedia (e.g., Kane, 2009), free/libre open 

source software development teams (e.g., Wu & Tang, 2007), electronic commerce 
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(e.g., Bampo, Ewing, Mather, Stewart, & Wallace, 2008) and corporate workflow (e.g., 

Brynjolfsson, Malone, Gurbaxani, & Kambil, 1994; Robey, Vaverek, & Saunders, 1989). 

Researchers in cognate disciplines are similarly recognizing the potential of this match, 

as Kleinburg (2008, pp. 66–67) writes: 

“Collecting social-network data has traditionally been hard work, requiring extensive 

contact with the group of people being studied; and, given the practical considerations, 

research efforts have generally been limited to groups of tens to hundreds of individuals. 

Social interaction in online settings, on the other hand, leaves extensive digital traces by its 

very nature … we can replay and watch … the ephemeral dynamics of ordinary life, now 

made visible through their online manifestations. As such, we are witnessing a revolution in 

the measurement of collective human behavior.” 

A measurement revolution is an exciting time, but it is also a time for reflection; with 

opportunities come risks, especially when methods developed in one context are applied 

in new contexts. In particular, the underlying assumptions of traditional social network 

analysis methods have not often been examined in detail when using digital trace data; 

indeed, a review of reliability and validity of measures of information structures 

addresses this type of data only briefly and uncritically (Zwijze-Koning & de Jong, 2005). 

This lacuna is reason for concern, as the available data and the kinds of structures they 

represent differ in key respects from the data and structures addressed in earlier social 

network studies. Failure to address these differences can threaten the validity of network 

measures, and can undermine the whole “chain of reasoning” (Hume, 2000, sec. 

Advertisement) that leads to reported results using SNA with digital trace data. If this 

exciting combination of phenomena, research questions, data and method is to reach its 

promise, these issues must be addressed. 
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This paper presents a series of decisions researchers have to make in executing a 

network study using digital trace data. For each decision, we highlight threats to validity, 

placing them in the context of existing validity frameworks commonly used in IS. We 

discuss the source of these threats and provide concrete illustrations of potential 

mistaken conclusions drawn from existing IS literature. We showcase studies that have 

dealt well with the threats. Finally, for each issue we provide a set of recommendations 

of how to address the issue in research and review. 

2.1. Defining social network analysis 

SNA is not a theory per se; it is a set of analysis techniques (thus SNA rather than SNT). 

Various substantive theories (e.g., Monge & Contractor, 2003) focus attention on 

networks in different settings, thus motivating the use of graph network analysis 

techniques, but these theories and the analysis techniques are conceptually distinct. 

There is a growing body of work that countenances building general network theory, 

often called “network science”, (e.g., Committee on Network Science for Future Army 

Applications, National Research Council, 2005; Kilduff & Tsai, 2003) but this project is 

not complete and in any case, the techniques of SNA are frequently used outside such 

theoretic perspectives.  

As a result, it is at best incomplete to speak of SNA findings, just as it would be to speak 

of regression findings. Indeed, the use of SNA analysis techniques parallels those of 

other such quantitative techniques. For analysis, a set of relationships is represented as 

a mathematical structure (a graph) composed of nodes and links, often encoded as an 

interaction matrix. The use of SNA thus requires the network to have been measured as 

a graph, just as the use of conventional statistical techniques requires that constructs of 

interest be measured as series of variables (i.e., as a data matrix). Given a graph or 

interaction matrix, calculations can be made of individual-level scores for the structural 
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position of nodes, such as various individual scores for network centrality, as well as 

measures providing overall summaries of structural characteristics for the whole 

network, such as network density or centralization. The application of these techniques 

is conceptually similar to the statistical computation of an individual score, such as a z-

score, to show an individual's relative position in a distribution, or a summary statistic 

such as a mean or standard deviation to summarize an entire sample.  

Just as statistical analysis techniques like averaging and finding standard deviations can 

be applied to data representing a wide diversity of constructs, SNA techniques can be 

applied to networks built from data representing diverse kinds of nodes and links, each 

with different theoretical characteristics. Those characteristics bear directly on the 

validity of interpretations. The goal of the paper is to consider how novel kinds of data 

raise different questions to be addressed by researchers.  

2.2. Defining digital trace data 

This paper considers validity issues in network analysis when working with digital trace 

data. We define digital trace data as records of activity (trace data) undertaken through 

an online information system (thus digital). A trace is a mark left as a sign of passage; it 

is recorded evidence that something has occurred in the past. For trace data, the system 

acts as a data collection tool, providing both advantages and limitations. The task for 

using this evidence in network analysis is to turn these recorded traces of activity into 

measures of theoretically interesting constructs. 

All trace data, not just digital trace data, has three characteristics which underlie many of 

the issues discussed in this paper: 1) it is found data (rather than produced for 

research), 2) it is event-based data (rather than summary data) and 3) as events occur 

over a period of time, it is longitudinal data. In each aspect, such data contrasts with 

data traditionally collected through social network surveys and interviews. 
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First, trace data are found data in the sense that they are a by-product of activities 

rather than produced by a designed research instrument. Wikipedia was not designed to 

test theories about knowledge production, nor are corporate email systems designed to 

collect research data. This origin contrasts with social network surveys or interviews that 

are specifically designed to produce data for research. Trace data, as found data, must 

be adapted for research purposes. Indeed such data might even prove to be more useful 

for some research questions for that very reason, once the validity concerns discussed 

in this paper are addressed. 

Second, trace data are event-based data, rather than summary-based data. In a 

traditional SNA survey, researchers typically ask directly about social relationships, 

relying on the respondents to recall and interpret their own interactions to summarize a 

social relationship. By contrast, with trace data researchers themselves must connect 

evidence to measure and event to social relationship.  

Of course, some events (and records of events) provide better evidence of a social 

relationship than others. At one end of this spectrum, some events by their mere 

occurrence provide summarized evidence of a social relationship. A wedding is an 

event, but is itself an expression, even an enactment, of a social relationship and is 

therefore strong evidence for a past and future social relationship. In a similar way, the 

act of “friending” someone in an online social network is both an event leaving a trace 

and a signification of some type of social relationship. However, what can be inferred 

from an event depends on the meaning the participants and their social context give it. 

Nonetheless, in some circumstances, by undertaking the action leading to the record, 

the participants are explicitly attempting to signify some social relationship. 

Much trace data, however, does not have such a signifying quality: a reply to an email 

on a mailing list seems unlikely to be an attempt to summarize a social relationship. Yet, 
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as a trace of activity and a type of interaction, it may provide evidence about a social 

relationship; careful research may make inferences without relying on the actors’ direct 

understanding of their social relationships. Many of the issues in this paper stem from 

this understanding of the task facing researchers: trace data show evidence of the “raw 

material” of social relationships, so the research task is to understand what can be 

inferred about higher-order constructs from the existence of the trace data. 

The final key characteristic of trace data are that they are longitudinal data, because 

the events that make it up occur over time. To apply network analysis techniques, the 

multiple events have to be aggregated to produce evidence of a network structure. 

Surveys typically ask respondents to report on a period of time, up until the point of the 

survey, but with trace data, researchers have to make decisions about how to deal with 

converting events that occur over time into networks. 

In defining trace data, it is worth noting the relationship between trace data and archival 

data. Archival data are that which are stored in and retrieved from an archive, rather 

than collected anew. Such archives could contain both trace data and data that 

represents participants’ summaries of their social relationships (i.e., not trace data). For 

this reason one can say that all trace data are archival, but not all archival data are trace 

data. By using the term trace data, we seek to emphasize that what is left in the archives 

is distinct; it is a trace of activity, indirect evidence for rather than a direct measure of a 

social relationship. Patent citations are a good example: the existence of a citation is 

direct evidence of a citing event, an author choosing to insert a citation into a patent. 

Converting from knowledge of this event into a construct such as knowledge flow may 

be a reasonable interpretation of the evidence, given an appropriate theory, but it is 

interpretation nonetheless and it ought to be argued as valid. 
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The second part of the definition of digital trace data is that the data are both produced 

through and stored by an information system. Not all trace data are digital in this sense, 

including patent citations. Moreover, trace data could be produced through direct 

observation; an example might be watching people in a lunchroom or constant recording 

of audio feeds processed to produce network maps. In Information Systems research, 

however, the growth of online interaction has lead to a marked increase in the availability 

and research use of explicitly digital trace data. In this respect, the involvement of a 

specific communication or information system is important. As we consider the issues 

below, we highlight those that are likely present with all trace data and those that stem 

more specifically from the involvement of an information system. 

Trace data are not new in SNA, but until recently data from questionnaires and 

interviews have been strongly preferred, and trace data relied upon only when these 

have not been possible. (Wasserman & Faust, 1994). This preference is reflected in the 

articles in the key SNA journal, Social Networks; our examination shows that there are 

almost no articles that make use of trace data alone (with Adamic and Adar (2005) a 

recent exception; they rely only on digital trace data).  

The far-more-widely-used survey methods, such as name generators and social network 

interviews, have developed their own literature of validity. Marsden (1990), for example, 

shows that people are notoriously poor at reporting discrete interactions but generally 

good at recalling long-term social structures. Other researchers have considered the 

differences between perceived networks and actual behavior (e.g., Kilduff, Crossland, 

Tsai, & Krackhardt, 2008), describing the limits of working with survey data to predict 

actual behavior. This paper is a step towards developing a corresponding understanding 

of the validity issues posed when working with trace data, especially in its digital form. 
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2.3. Defining validity 

Validity is a concern in all research; it concerns the approximate truth of an inference. As 

Sechrest (2005) notes, “validity must be considered to inhere in a system or process of 

which the instrument itself is only a feature.” The relevant system in this context is the 

researcher’s theoretical context, which first suggests theoretical constructs to be 

measured. To argue that the measurement is valid the researcher builds a chain of 

reasoning linking construct to data. This chain must run logically in both directions, from 

data to construct and construct to data.  

The Information Systems field has found the validity frameworks developed by Cook and 

Campbell (1979) and Shadish, Cook and Campbell (2001) particularly useful for 

understanding validity. These frameworks divide validity issues into four categories 

spanning across the chain of reasoning in research: construct validity, statistical 

conclusion validity, internal validity and external validity. Construct validity refers to the 

extent to which operationalizations (or measures) validly approximate theoretical 

constructs. Statistical conclusion validity refers to the extent to which statistics validly 

support the inference that measures co-vary. Internal validity reflects the extent to which 

the inference that such covariance is due to causality is valid. External validity refers to 

the validity of inferences about the extent to which such cause-effect relationships hold 

in different research settings (often referred to as generalizability). 

The analysis of validity is not a formulaic exercise; indeed this validity framework is, in 

the words of its authors, “practical only” and the categories derived from “their apparent 

correspondence to four major decision questions that the practicing researcher faces.” 

(Shadish et al., 2001, p. 39). These categories align most clearly with experiment-based 

research designs, though they have been extended to cover quasi-experimental 

approaches as well. However, research using SNA with digital trace data employs a 
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wide variety of approaches, only some of which naturally resemble experimental 

structures. Therefore, in the spirit of Cook and Campbell, we frame our study of validity 

issues with respect to the decisions practicing researchers must make, relating to the 

Cook and Campbell validity framework as appropriate. The issues raised below relate to 

Cook and Campbell’s construct, internal, and statistical conclusion validity categories. 

We do not deal explicitly with issues of external validity, since we do not find that 

working with digital trace data raises any particular external validity issues beyond those 

relevant and important to research in general.  

3. Alignment along the chain of reasoning 

To ensure the validity of network research, researchers must think carefully about the 

network process at play in their theory, consider appropriate network measures, identify 

appropriate operationalizations of nodes and ties in the context of their data and so 

connect to measures and constructs, iterating through the chain of reasoning until it is 

cohesive, as shown in Figure 1. At the top of Figure 1 is a summary of the abstract chain 

of reasoning; at the bottom are two examples. Each link in this chain has validity 

implications, and it is around these links that we organize the remainder of this paper.  

In practice, the process of achieving alignment between a theoretical context and the 

chain of reasoning underlying valid measurement is an iterative one, most likely 

involving multiple adjustments and decisions and revisiting these to achieve a cohesive 

logic. Within the limits of this paper, however, we must present the issues in a linear 

fashion: we do so according to a progression of reasoning from data to construct, though 

we do not suggest that research ought to be driven solely in this direction.  
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We start by considering an information system that creates digital trace data, raising 

issues of 1) system and social practice and 2) reliability. The next link we consider 

concerns transforming digital trace data into nodes & links, raising questions of 3) link 

types, 4) link intensity and 5) missing links. Turning nodes and links into a network raises 

issues of 6) temporal aggregation; using that network to obtain a measure raises issues 

of 7) network tool effects and 8) temporal mismatch. Finally, aligning a measure and a 

construct raises 9) questions of data completeness and inference and 10) Inappropriate 

importation of network measure interpretation. Of course, all of these decisions must be 

made in the context of some overall theory; we therefore return to accomplishing 

theoretical cohesion across the full chain of reasoning in the Discussion.  
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Figure 1: Links in the chain of reasoning and validity issues in network 
analysis with digital trace data 
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3.1. Aligning information system and digital trace data 

Information systems support an amazing variety of human activity, from work processes 

to social support, and are involved in collective activities that span a range of virtuality, 

from entirely online to those where the system is completely peripheral. It is surprising, 

therefore, that the specifics of the information system under consideration often do not 

appear in studies using digital trace data, as Orlikowski & Iacono (2001) note more 

generally. Moreover, it is a key understanding of Information Systems as a discipline that 

technologies are rarely used only as designed; design and use co-develop in a 

structurational process (Poole & DeSanctis, 1990) in which both the use of a technology 

and the technology itself change over time. This consideration gives rise to two key 

issues in using digital trace data for research: 1) understanding how the system is used 

in practice and how the specifics of the system impact behavior, and 2) how the system 

records behavior, especially over time, raising issues of data reliability. 

3.1.1. Issue 1: System and practice 

Databases of digital trace data typically come with system labels, such as “reply-to,” 

“friend,” “assigned-to,” “member-of.” These evoke concepts of great interest to 

researchers. Yet the actual use, and therefore meaning, of these fields and records can 

be quite different from those concepts. For example, IBM’s JAZZ work collaboration 

system requires “membership” of a work team simply to view that team’s records; 

therefore teams often have “members” who have done no work, in contrast to most 

conceptualizations of the role of a team member. In many community-based open 

source projects, to avoid discouraging others from working on a problem, the “assigned-

to” field in a bug report is only filled out when a developer has finished the task, 

(Howison, 2009), in contrast to the usual notion of proactive task assignment in work 

teams. Certainly these fields have some meaning, but it is problematic to assume an 
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interpretation without an understanding of how the information system is used in 

practice. Since the information system, when interpreted, is also the measurement 

device for trace data, such misunderstandings can threaten construct validity, rendering 

data and measures derived from the data at best a poor proxy for the behavior and 

constructs of interest. 

Moreover, the meaning of system-based interactions can change over time, even 

without obvious changes in the system or labels on the data. Long-term data are very 

useful of course, but only if the researchers have adequately grappled with how they 

might have changed over time. For example, when using a data set based on software 

code change logs over twenty years (e.g., Merlo, Slaughter, & Francalanci, 2009), 

researchers should question whether it is truly reasonable to expect that the code 

version management tool has been used consistently (in ways that matter to the 

research) within the organizational context for two full decades. 

Similarly, it is important to understand how the use of the system is intertwined with 

unrecorded but relevant activity. Does the system capture nearly all of the interaction of 

the group, or does the group only use the system for a certain kind of interaction, or do 

they only use the system at particular times? What other systems are in use? Only with 

such understandings can the researcher grapple with the implications for their research 

context. It may, in fact, be of great interest to study and compare a “digital” network with 

a “face-to-face” network, but it would be a mistake to always reason on the basis that the 

digital network was the only source of interactions, as we discuss in detail in Issue 9, 

below. 

System use waxes and wanes over time, especially as systems age and others come 

online. Researchers may need to understand such patterns to ensure that they have 

collected adequate data. For example, Wiggins et al. (2008), in analyzing interactions on 
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an open source bug tracking system, reports one project in which hundreds of bugs had 

apparently been resolved within a few minutes. Detailed qualitative examination of this 

case revealed that the project had transferred bug reports from an old system to the one 

being analyzed via a bulk import. The transferred bug reports were thus stored with 

nearly identical open and close times. Including the data from this project in the analysis 

could have led to an incorrect inference regarding the causation of this burst of bug-

fixing. If behavior is being measured over long periods of time, such changes in use can 

cause issues of construct validity through measurement error. If behavior is being 

measured in multiple short snapshots, such changes in use can cause issues of internal 

validity, since they may cause a false appearance of change in behaviors of interest (see 

Issue 7, below). 

Understanding these issues, and the extent to which they matter for particular research 

questions, requires direct attention from researchers. The issues are summarized in 

Table 1 below (a similar table will be presented for each subsequent issue). Clearly it is 

of great advantage to work directly with participants, through interviews, observation and 

direct participation, to build a qualitative understanding of system use and how it fits into 

the overall interactions of a group. Geiger and Ribes (2011) call the process of taking 

digital traces and learning their meaning “inversion.” The event traces themselves are a 

particularly valuable point for developing understanding, since “documentary traces are 

the primary mechanism in which users themselves know their distributed communities 

and act within them.” (Geiger & Ribes, 2011, p. 1). For this reason, simply reading event 

records in sequence and working to reconstruct narratives can aid researchers 

significantly in understanding system-use and establishing face validity in publications. 

Furthermore, the records themselves provide excellent anchors for interviews, helping 

participants recall specifics rather than generalities of their activity. Not all system-based 
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research requires a full “trace ethnography” as called for by Geiger and Ribes, but 

studies using digital trace data as evidence ought to demonstrate to readers and 

reviewers that they have adequately grappled with issues of system use and its change 

over time. 

Table 1: System and practice issues 
Decision Do users in fact use the information system as measurement (often 

implicitly) assumes they do? How has that use changed over time? 

Validity issue/type Misunderstanding system use can lead to invalid interpretations of 
the data it collects. (Construct validity, measurement validity, 
statistical conclusion validity) 

Cause Systems are used in surprising and unexpected ways; database 
labels can take on different meanings in different contexts as well 
as change over time. 

Examples Wiggins et al. (2008) 

Recommendations Intimate knowledge of the system, through interviews, participation, 
supported by the records themselves. Consider undertaking “trace 
ethnography” (Geiger & Ribes, 2011). 
Demonstrate this familiarity with the system use context in 
publications, such as through illustrative narratives. 

3.1.2. Issue 2: Reliability issues from system generated data 

On the surface, relying on a system to automatically collect data, as with digital trace 

data, would seem to ensure its reliability. Indeed Garton et al. (1997) go as far as to say 

“gathering data electronically replaces issues of accuracy and reliability with issues of 

data management, interpretation, and privacy.” However, even if it can be established 

that the systems have been used in an adequately understood manner, to ensure 

reliability of measurements of digital trace data it is essential to understand the 

processes by which the archives, and thus data, are recorded and whether and how the 

system’s recording processes have changed over time. 

Unfortunately, a detailed examination of CMC systems may reveal numerous potential 

threats to reliability, such as inconsistent time zone management, server outages, and 
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incomplete or inconsistent event logging, to name a few. For example, in a system that 

records email messages, times on the messages may be local time for the sender, local 

time for the server, GMT, or (in the worst case) some undecipherable combination. 

Resolving the question of what time a message was sent is difficult but necessary to 

reliably determine the order of messages or to aggregate the messages over time. More 

simply, a server crash may result in the loss of some data, likely with no explicit 

indications of a break in data integrity. A common problem that affects network research 

more specifically is that systems can have multiple system representations of a single 

user. Analyzing data including these multiple representations result in splitting or 

merging network nodes in ways that might alter the whole network structure. Research 

on this topic has shown that the actual impact can be problematic and significant but it 

depends on both the intended measure and the specific network topology (Franz, 1998), 

making general statistical control difficult. 

Similar issues exist even with data that researchers do not collect themselves, such as 

database dumps provided by the community systems. For example, the data provided to 

the Notre Dame Sourceforge Research Data Archive provide a convenient source of 

data about Sourceforge-based open source development projects (Gao, Van Antwerp, 

Christley, & Madey, 2007). Similarly, the Wikimedia Foundation has made available 

dumps of the database driving the Wikipedia system. Such data dumps can be used to 

build association networks based on membership or co-editorship, or communication 

networks drawing on issue trackers, forums or talk pages (e.g., Kane, 2009).  

However, the data in these systems exist to support the operation of the community, 

rather than being created for research. Therefore, pragmatic issues in operating the 

system will affect the reliability of measures constructed from this data, and often do so 

silently. For example, tables in many system databases are periodically purged to 
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maintain a manageable size for running a website. This process results in database 

dumps with apparently extensive history that are actually truncated at an arbitrary date 

with no explicit record of such truncations. This problem is a very real issue in the 

(otherwise excellent) SRDA data set (Gao et al., 2007) where early dumps contain 

records that do not appear in later dumps, despite those later dumps including 

apparently full history tables. It is important to remember that the purpose of the 

Sourceforge database is running Sourceforge, not maintaining a full history of activity for 

researchers. 

The English-language Wikipedia, as another example, has experienced issues with 

archiving due to its size, preventing full-text dumps from being made available for almost 

two years. The earlier history may be available from earlier dumps, but merging 

disparate, partially overlapping sources is quite difficult, particularly as incremental 

changes made over time may result in incompatible database schemas1. Similarly, 

systems that make usage-reporting data available may change their data sources or 

methods of calculation without notice, and almost undoubtedly without recalculating 

historical usage reports according to the new method, as occurred when the 

Sourceforge statistics server and system was redesigned, in both 2007 and 2010.2 

Unreliability of measures poses a threat to validity in two ways. First, it is a threat to 

statistical conclusion validity because measurement error undermines the ability to 

accurately assess covariation. Shadish, Cook and Campbell (2001, p. 45) draw on 

literature to show that unreliability of measures always “weakens the relationship 

between two variables” and has unpredictable effects on relationships between more 

than two variables.  

                                                
1 “Old Wikipedia backups Discovered” http://lists.wikimedia.org/pipermail/wiki-research-l/2010-

December/001282.html 
2  http://sourceforge.net/apps/trac/sourceforge/ticket/16511#comment:1 
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Second, these issues can affect internal validity, the extent to which the inference that 

such covariance is due to causality is valid. With digital trace data, where the information 

system is the de facto data collection instrument, there is a risk of mistaking a change in 

instrumentation, as with a change in use, as a real change to the construct of interest, 

equivalent to a “treatment effect” in the experimental language of Shadish, Cook and 

Campbell (2001). This issue arises when a system change occurs in a way such that 

data collected before and after the change are meaningfully different. As discussed 

above, systems that are run for the benefit of a community and not for research should 

be expected to evolve considerably over time, as such technological evolution is a 

natural outcome of sociotechnical interactions. 

In summary, connecting the information system to digital trace data raises issues of 

reliability that can in turn constitute threats to validity. Researchers need to attempt to 

understand the sources and distributions of such errors and their impact on their chosen 

measures; one cannot simply assume that errors like these will not be important. To 

understand the likely errors, intimate knowledge of the online community system and its 

quirks is ideal. Unfortunately, the system details needed to assess instrumentation 

reliability are rarely public and often hard to obtain even for participants in the 

community, who often are not privy to system administration details. Researchers with 

personal connections who are running the servers or who are otherwise in a position to 

acquire this information, such as through interviews, have an advantage in establishing 

the reliability of their measurements. Another option is to undertake small test actions to 

closely observe how these are recorded by the system. Finally, authors ought to 

consider the literature on SNA robustness, which will help assess whether their 

measures are sensitive to particular issues experienced (e.g., Franz, 1998). Reviewers 
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should ask authors to demonstrate knowledge of how the information system affected 

their data collection and interpretation. 

3.2. Aligning digital trace data and nodes & links 

Any network is, by definition, made up of nodes (vertices, points) and links (ties, 

relationships, edges), thus an important link in the chain of reasoning is the decisions 

that a researcher makes is regarding the nature of both nodes and links. In Social 

Network Analysis (emphasis on the Social), nodes are almost always people, although 

at different levels of analysis they might be individuals, groups or organizations. Related 

forms of network analysis, such as Dynamic Network Analysis (Krackhardt & Carley, 

1998) and analysis grounded in Actor Network Theory (Latour, 2005) or Socio-technical 

congruence (Cataldo, Herbsleb, & Carley, 2008) posit a role for nodes representing 

entities other than people, such as artifacts, tasks or facts. Kane and Alavi (2008) argue 

that SNA research in IS would benefit from an approach that includes these multiple 

kinds of nodes. This perspective specifically includes systems as actors, demonstrating 

their approach through a study of system use in a healthcare setting that draws on the 

Table 2: Reliability and system generated data 
Decision Can the system records be taken at face value as accurate and 

complete? Has the system changed the manner in which it records 
actions? 

Validity issue/type The information system is the data collection tool and its 
interpretation is measurement; unreliable measurement threatens 
both internal and statistical conclusion validity. 

Cause Systems are designed and maintained to serve a purpose other 
than research; measurement validity is not a requirement. 

Examples Silent truncation of data in Sourceforge and Wikipedia dumps. 

Recommendations Intimate knowledge of the system, through interviews, participation. 
Making and tracking “test” postings, to witness how the system 
records actions. 
Actively inquire about system changes and database purges. 
Examine literature on SNA robustness for your intended measure. 
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idea of “indirect system use” through interaction of non-system users with system users. 

Perhaps because they are relatively familiar objects and more or less fixed over time, 

the conceptual definition of nodes seems to create fewer problems than the conceptual 

definition of links, leading us to focus on the latter. Below we highlight validity issues 

stemming from three decisions to be made about links: their type and number, their 

intensity, and the ontological status of a missing link. 

3.2.1. Issue 3: Choosing multiple or single link types 

A key conceptual decision that a researcher must make is whether their network 

comprises one or multiple different kinds of links between nodes. Borgatti et al. (2009) 

examine the differences between SNA research as carried out in the social sciences and 

the burgeoning work using similar techniques in the natural sciences, physics in 

particular. They make the point that social scientists using SNA are usually interested in 

multiplex links and their interrelationship; as they say, “social scientists typically 

distinguish among different kinds of dyadic links both analytically and theoretically” 

(p. 893). These different types of links include similarities (such as location or 

membership), social relations (such as kinship), interactions (such as communication or 

sex) and flows (such as flow of information or beliefs). Survey elicitation, sometimes 

combined with archival data, can be crafted to measure such multiplex links.  

Borgatti et al. contrast the multiplex approach with research that has focused on creating 

massive networks derived from trace data and analyzing their mathematical properties 

(e.g., their similarity to networks created by processes such as preferential attachment or 

randomly linked networks). In these networks, there is generally only one kind of link, 

e.g., a hyperlink between web pages that can be used to derive the structure of the Web.  
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In general, researchers in the IS literature seem to have followed Borgatti and 

colleagues’ second path, most often constructing networks that include only a single kind 

of relationship, such a "replied to" interaction (e.g., Wasko & Faraj, 2005). Some studies 

do utilize multiple sources to draw their networks (e.g., Wagstrom, Herbsleb, & Carley, 

2005) but nonetheless eventually draw their networks with only a single relationship. A 

rare exception is the work of Kazienko et al. (2008) who studied the photo sharing site 

Flickr, using different kinds of activity, such as tagging others’ photos, or having applied 

the same tag to a photo, as well as contact lists, eventually outlining “nine separate 

layers in one multi-relational social network,” and going on to compare structures in 

different layers. They do not, however, make strong theoretical arguments that there are 

separate constructs measured by the different layers, as is more common in sociological 

applications of SNA (Borgatti et al., 2009). 

In summary, IS research studies using SNA have tended to use system-generated data 

to construct networks of a single link type. This approach contrasts sharply with 

traditional sociological SNA methods that tend to utilize surveys and interviews, together 

with some observation, and often collects multiplex relationships. In this sense IS 

research drawing on SNA is closer to the network research undertaken in physics (e.g., 

Ebel, Mielsch, & Bornholdt, 2002; Kossinets & Watts, 2006), than it is to network 

analysis in sociology (Borgatti et al., 2009). This is true even though the research 

questions considered in IS typically bear greater similarity to those in sociology than they 

do to physicists’ interest in the topological classification of massive networks and their 

variation from randomness. While it may be theoretically appropriate to use only single-

link types, this is an important decision that needs to be argued from theory and not 

made merely from convenience. 
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Table 3: Multiple or single link types 
Decision Will links be of a single type, or are multiple link types important? 

Cause Found data may only capture a single type of interaction. 

Validity type Construct validity 

Examples Wasko and Faraj (2005) 

Recommendations Be critical and conservative in assumptions about what links 
represent. 
Triangulate with multiple measures of links (e.g., Wagstrom et al., 
2005) and examine consistency. 

3.2.2. Issue 4: Defining a link (intensity and dichotomization) 

The logical link between data and nodes/links requires researchers to decide what 

pattern of events constitutes a link and whether that link is binary or valued by its 

intensity. The intensity issue turns on the argument that the strength of ties affects the 

nature of interactions between individuals (Granovetter, 1973). Research on SNA in 

offline contexts has approached this issue by including survey questions on both 

different types of relationships (friendship, advice, authority) and their respective 

strengths, allowing participants to translate their memory and interpretation of patterns of 

past interactions into diverse measures (Marsden, 1990).  

Direct interaction data from digital traces would seem to provide useful evidence on 

interaction intensity, since a count of multiple messages exchanged over time (or other 

quantifiable link characteristics, like the rate of message exchange or the volume of text 

in the messages) can be used to indicate varying intensities of interaction between 

actors by creating weighted networks. However, the decision to operationalize a 

theoretical relationship based on such data is an inference subject to threats to construct 

validity. Accordingly, the researcher must carefully use contextual information to guide 

the selection and interpretation of measures of intensity.  
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There are a number of techniques for incorporating intensity data in the measurement of 

a link. One approach is unit weighting, which increases the weight, or value assigned to 

each link, by a fixed unit for each message between a pair in the network sample. This 

approach is generally seen in association networks, in which weights represent counts of 

behaviors, such as an individual weditor's changes to specific articles (Kane, 2009). 

Node strength is also an option for evaluating centrality with this edge weighting method 

(Valverde, Theraulaz, Gautrais, Fourcassie, & Sole, 2006), indicating the volume of 

activity in dyadic pairs. Analysis of longitudinal data may apply a time-based decay 

(Wiggins et al., 2008) to give greater weight to more recent interactions. Most 

importantly, however, the rationale for these decisions should be presented to 

demonstrate that the choices made are sensible in terms of the theoretical process held 

to be occurring. 

Complicating this issue, relatively few SNA techniques are intended for use with 

weighted networks (see Opsahl and Panzarasa (2009) for a summary). Most measures, 

including all commonly used centralization metrics, assume dichotomous relationships. 

This assumption is quite appropriate in the design context of limited computational 

power applied to analyzing networks built on designed surveys that yield abstract 

relationships of roughly equal strength, as opposed to highly variable interaction-based 

links from trace data.  

As few robust techniques utilize edge weights, the usual analysis approach calls for 

dichotomizing the networks based on threshold criteria (e.g., only including links that 

represent more than 5 interactions). However, dichotomization is a potential source of 

threats to construct validity that ought to be explicitly addressed. First, dichotomization 

involves throwing away much of the available source data. Second, dichotomization 

requires selecting threshold criteria, which can be sensitive to such factors as the size of 
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the data sample. As a result, careful analysis is also needed to determine appropriate 

theoretical selection criteria for setting thresholds. Finally, dichotomization assumes that 

the theoretical construct of interest is in fact binary, as opposed to continuous. 

Alternately, rather than treating low levels of interaction as a lack of evidence for a 

relationship, it may be more appropriate to treat high and low levels of interaction 

frequency as indicative of different types of relationships, as in Granovetter’s (1973) 

theory of weak and strong ties. It is worth considering, for example, whether links of very 

different intensities (e.g., one vs. hundreds of exchanged emails) represent qualitatively 

different kinds of connections. All these issues must be argued on the basis of how best 

to operationalize a specific construct in the context of an overall theory. 

For these reasons, researchers ought to be quite explicit about their dichotomization 

decisions, and avoid a common pattern of describing the collection of valued data that is 

then dichotomized for the calculation of the network measure without describing the 

dichotomization criteria. Unfortunately decisions about dichotomization are usually 

acknowledged only in passing or mentioned as a limitation at the end of papers (e.g., 

Ahuja & Carley, 1999; Crowston & Howison, 2005; Wagstrom et al., 2005), a strategy 

that confuses the reader as to whether the data collected was in fact used, and does not 

adequately address the validity issues mentioned above. When the interpretations of 

participants' own understandings of the importance and meaning of past patterns of 

interactions is not available, the threshold point at which a pattern of interactions (such 

as count, recency, multiple channels or even content) is sufficient for the inference of the 

strength or quality of a relationship becomes a key conceptual decision with clear 

construct validity implications that ought to be argued and explored just as any other 

issue of construct validity. 
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Table 4: Link intensity 
Decision Should links be binary; if so what is a valid threshold? If not, how 

should the link value be related to record counts (linear, 
exponential, through recency?) 

Cause Trace data offers natural counts for intensity, yet these may not 
match the content of the construct. 

Validity type Construct validity 

Examples Crowston & Howison (2003); Wagstrom et al. (2005); Wiggins et al. 
(2008) 

Recommendations Argue intensity decisions, especially dichotomization, with 
reference to the theoretical context. 
Consult Opsahl and Panzarasa (2009) and the TNET R package 
(http://opsahl.co.uk/tnet/) for measures that utilize intensity. 

3.2.3. Issue 5: Defining a non-link  

The choice of when to assess that a link exists is also a choice of when to assess that a 

link does not exist. In many theories, the absence of a link is as meaningful as the 

presence. For analyses drawing on the notion of brokerage or “structural holes” (Burt, 

1992), for example, it is fundamental to understand where information cannot travel, 

since this identifies privileged routes (a broker is one who is uniquely linked to a portion 

of the network and therefore able to control access or information flow; a structural hole 

is one of the missing potential links between groups which could be strategically filled). 

The construct validity of such measurements depends on the validity of the inference 

that the network is one in which information flows along the identified links, but just as 

importantly, that information cannot flow where links have not been identified.  

Similarly, the meaning of non-links is important to understanding the construct of 

information sharing, important in innovation, diffusion and contribution (e.g., Brynjolfsson 

et al., 1994). Information sharing can be studied from a network perspective by 

measuring the network of individuals linked through their communication activities. Given 

a valid information-sharing network, SNA summary measures can provide insight into 



   26 

the processes of information sharing by identifying key individuals and providing 

measures for comparison of different groups. For example, high betweenness centrality 

indicates which individuals are on the shortest path between many others, and therefore 

positioned to affect the flow of information through the network. Likewise, network 

diameter indicates the maximum number of links through which information must travel 

in order to be transmitted between an average pair of individuals, suggesting how 

quickly a group may spread new information. Again, the validity of such measurements 

depends on the assumption that the absence of a link means information cannot flow. 

Traditionally recommended SNA techniques, such as survey responses to name 

generators, implicitly provide non-occurrence data. Asking a survey respondent to 

indicate all of the people from a list with whom they interact creates valid grounds for 

inferring that those not indicated are not interacted with (at least not sufficiently for the 

respondent to infer a relationship). However, to connect digital trace data to nodes and 

links requires the researcher themselves to make this step, and to demonstrate that they 

have done so with sufficient validity. In some cases, the absence of any events 

suggesting a link may be an appropriate indicator of the absence of that link, but this 

assumption is not always justifiable (see Borgatti, Carley, & Krackhardt, 2006 for a 

detailed discussion). As a result, it is incumbent upon the researcher to be clear as to 

the ontological implication of the absence of evidence regarding a link. Just as the 

researcher must argue that their inference of a link is valid, they must also argue that 

their inference of the absence of a link is valid. 

When analyzing face-to-face networks, inference from missing evidence to non- links is 

bolstered by physical aspects of the world, such as the limited range and impermanence 

of audio and the real-time feedback between speaker and listener; evidence of speaking 

to another is both evidence that the other heard and evidence that others not present did 
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not hear (at least not through this event). Such an assumption may also be valid for 

interaction via some ICT, as when emails are exchanged directly from senders to a short 

list of recipients listed in the message (i.e., non-broadcast email), especially when those 

recipients reply, indicating that they had, in fact, received the message.  

On the other hand, trace data often includes listservs or other broadcast forums, 

especially in online communities. In most listservs, all emails are archived and made 

available to all community members, and even to the general public (Grippa, Zilli, 

Laubacher, & Gloor, 2006). When email communications occur via a listserv, whether 

archived publicly or not, the data provides weak evidence regarding information flow and 

control. In particular, it is impossible to argue the meaningfulness of measures based on 

information control, such as betweenness or closeness, as measures of importance, 

because in this case there is no such mediation. Calculations such as the diameter of a 

reply-to network are similarly meaningless for understanding information flow: if 

information is broadcast on a mailing list, it potentially reaches all group members at 

once. Unfortunately, a lack of consideration of the properties of the medium is 

disturbingly common in IS research, and rarely addressed (e.g., Bird, Gourley, Devanbu, 

Gertz, & Swaminathan, 2006; Concas, Lisci, Pinna, Porruvecchio, & Uras, 2008; Wu, 

Goh, & Tang, 2007). Truly grappling with information flow in discussion lists would 

require an understanding of readership behaviors. Unfortunately, very little work has 

directly examined readership, since it usually leaves no trace data; notable exceptions 

are Lakhani and von Hippel (2003), Yeow et al. (2006) and (Goggins, Galyen, & Laffey, 

2010).  

Consideration of the meaning of non-links suggests validity concerns regarding a 

common analysis strategy with data from listservs, namely the analysis of reply-to links. 

As message recipients are not specifically named in mailing list data, researchers often 
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examine instead the structure created by message responses (Crowston & Howison, 

2005; Wasko & Faraj, 2005; Wu et al., 2007). A network can be constructed by creating 

links between message authors at the message level (i.e., linking A to B if B replies to a 

message posted by A), or even more indirectly, at the level of the reply thread, by 

creating a link between all participants in a given email reply thread (Concas et al., 

2008). Unfortunately, few researchers have been very explicit about what construct such 

a network represents (i.e., what the presence vs. the absence of a reply means 

conceptually). It should be clear at least that response structure is not a valid measure of 

information flow: while those who reply to a message have (most likely) read it, non-

response does not indicate that other members have not. Messages posted to an email 

list may be read by only the people who reply in a given thread, by every member of the 

list, or more likely, by some unknown proportion of the subscribers (Howison, Inoue, & 

Crowston, 2006) and possibly even non-community members accessing a listserv 

archive.  

Our point is not to argue that networks constructed from broadcast reply-to trace data 

cannot be useful or ought not be explored. Such network measures might, in fact, 

provide some very interesting insights, such as who or what prompts another to reply in 

public, or making non-information flow arguments based on, for example, the signaling 

effect of having been replied to (i.e., by providing an argument for the interpretation of a 

reply in a broadcast context vs. an absence of a reply). Our point is merely that the 

researcher should to make an argument as to the meaning of such links explicit. More 

generally, they should take as much care to argue that the identification of a missing link 

is valid as they do to the presence of a link. 
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Table 5: Missing Links 
Decision Are missing links theoretically important? If so does the absence of 

a positive link validly provide evidence for the absence of that link? 

Cause Trace data are the result of action but may not provide evidence of 
inaction for some constructs. 

Validity Type Construct validity 

Examples Crowston & Howison (2005); Wasko & Faraj (2005); Wu et al. 
(2007) 

Recommendations Understanding the theoretical significance of missing links; 
consider whether unrecorded actions (such as reading) need to be 
considered. 

3.3. Aligning node & link and network 

The next set of issues concerns the logical connection between appropriate definitions of 

nodes and links based on well-understood digital trace data and construction of a 

network. Making this connection can seem deceptively simple but poses significant 

threats to validity. The key challenge stems from trace data as longitudinal data: events 

occur at particular points in time, and thus multiple events must be aggregated to 

construct a network. 

In SNA based on surveys, data were collected at a particular point in time, but as they 

were based on recollections, by nature they measured impressions up to that point in 

time. Such an approach is appropriate to measure relatively stable links. Indeed, many 

sociologists prefer survey data for exactly this reason: they capture participants' 

understandings of the social relationships (and thus the network) in general (which is 

typically the construct of interest) rather than the interactions at a particular moment at in 

time which may or may not be representative of the network (Marsden, 1990), 

In contrast, trace data are records of events that take place at particular points in time, 

and those events can be quite sporadic (e.g., a series of email messages sent from 

person to person). Data representing associations may also be available longitudinally, 
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such as records of members joining, leaving or participating in groups (e.g., editing a 

wiki page at a particular point in time).  

The longitudinal and episodic nature of trace data offers both opportunities and threats 

to validity. On the one hand, longitudinal data can be very valuable for testing causal 

theories. For example, Hahn et al. (2008) studied the effect of previous working 

relationships on later decisions about which open source software project to join. Other 

researchers have taken advantage of the temporal nature of the data to investigate 

network dynamics, e.g., by drawing networks for consecutive time periods, thereby 

producing time-series of network statistics and analyzing the trends (e.g., Christley & 

Madey, 2007; Falkowski, Barth, & and Spiliopoulou, 2008; Howison et al., 2006; Long & 

Siau, 2007). Researchers have also explored visualization techniques for longitudinal 

social networks (Moody, McFarland, & Bender-deMoll, 2005), and more specifically, for 

handling the fine-grained temporality of online discussion data (Trier, 2008). On the 

other hand, longitudinal data must be aggregated to build a network structure (Trier, 

2008), collapsing a series of events over time. The extended period of data collection 

and the necessary aggregation process have implications for the construct validity of the 

resulting network measures (Howison et al., 2006). We examine two in detail below: 

temporal aggregation and temporal mismatch. 

3.3.1. Issue 6: Temporal aggregation 

A particularly pernicious issue arises when creating a network by aggregating links that 

occur at different points in time. For example, consider a study of information sharing 

using point-to-point communications links, where A sends a message to B and, later, B 

sends a message to C (see Figure 2). If the messages are sent in this order, it is 

possible for A's information to reach C, but not if the messages occur in the opposite 

order (in the absence of other messages, as we discuss below). Similarly, in the case of 
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an association network, if two individuals are members of a group at the same time, 

there is a possibility of some kind of influence process (such as learning of best 

practices), but if their memberships do not overlap in time, the influence can be in one 

direction at best (e.g., Kane, 2009).  

 

Figure 2: The implications of collapsing flow networks built from trace data over 
time; note the indistinguishable network representations for the different sets of 
possible paths 

Aggregating links across time to form a single cumulative network will suppress these 

nuances, potentially leading to invalid conclusions. When working with flow networks, at 

least, even employing a directed graph representation can introduce paths not possible 

in the original data, as demonstrated in Figure 2, below. Since the logic of many 

common network summary measures is based on paths through the data (see section 8 

below), the introduction of impossible paths due to temporal aggregation is a clear threat 
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to construct validity. (It might be less problematic in networks that are not based on a 

logic of flow, see Discussion, below). Avoiding this issue entirely can be difficult; 

aggregation is required to perform network analysis using digital trace data.  

Two techniques are available to deal with the issue. The first approach is to represent 

the "network" as a set of actual sequential paths through nodes, rather than a traditional 

network and analyze appropriately, an approach demonstrated by Brynjolfsson et al. 

(1994).  

A second approach is to follow the argument of Nia et al. (2010) (who respond to a 

working version of this paper). They call this issue “transitive faults” and demonstrate 

two approaches to exploring its impact. Their arguments are empirical and thus they 

make the case that this issue is not problematic for their specific data, rather than in 

general; this approach could be followed with any set of specific data.  

Their first technique is to develop upper and lower bounds on the quantity of “transitive 

faults” created by time-windows differing in time (measured by Spearman rank 

correlations between the results for each sized time-window). Assuming that the time-

windows at which these issues are not so significant are appropriate for the particular 

construct under consideration (see Issue 7, below) such bounds are an excellent 

approach to arguing to show that the issue does not significantly affect results for 

particular data and a particular research question.3 

Their second technique is to use a simulation of network growth to “fill in” the missing 

data and then show that the measures of interest have reasonable correlations, whether 

created with the original data or the simulated data. This second technique relies on 

                                                
3 While we endorse the overall methodological approach of Nia et al. (2010), their specific application seems 

problematic since they limit their analysis to the top 10% of participants by message count. This makes it 
much more likely that, as time windows expand, an exchange will eventually be found that resolves the 
transitive fault. For some research questions, such as those concerned with diverse sources of knowledge 
from the periphery, this decision would undermine the usefulness of the technique. In general, however, 
seeking and showing upper and lower bounds for the impact of this issue is an excellent approach. 
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knowing an appropriate simulation of behavior leading to the network and the idea that 

the data collected is not complete (see Issue 9, below). 

Table 6: Temporal Aggregation 
Decision Does the order in which events happened matter? Will aggregation 

introduce spurious or empirically impossible links? 

Cause Trace data captures evidence of dyadic links; a network must be 
an aggregation of such links. Aggregating directed links introduces 
spurious links.  

Validity Type Construct validity 

Examples Howison et al. (2006); Kane (2009). 

Recommendations If the links are directed, consider working directly with network 
paths, rather than collapsing to a regular network (Brynjolfsson et 
al., 1994). 
Explore and demonstrate upper and lower bounds on this problem 
for your data and measure, arguing that even if the measure is 
affected to the extent of the upper bound that the results would still 
support the argument made in the paper. See Nia et al. (2010). 

3.4. Aligning network and network measures 

A common task in analysis given a network is to compute various measures on the 

network. For example, as noted above, in studies of influence, betweenness centrality 

might be computed to determine which individuals are positioned to affect the flow of 

information through the network. However, the longitudinal nature of the trace data 

raises validity issues in this task. In addition, differences between digital trace data and 

more typical SNA data are reflected in the potential mismatch of SNA tools used for such 

calculations to trace data.  

3.4.1. Issue 7: Temporal mismatch 

A decision about the time period over which to construct a network is simultaneously a 

decision about the period of time for which measures derived from that network will be 

measured. An issue of construct validity from aggregation comes from a potential 

mismatch between the stability of the construct of interest as compared to the degree of 
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aggregation of the data. The particular construct measured as a network link may be 

conceptualized as being stable (e.g., long-term friendship ties) or dynamic (e.g., high 

school dating ties), meaning that the network structure potentially changes and evolves 

over time (see Huisman & Snijders, 2003; Leskovec, Kleinberg, & Faloutsos, 2005). Of 

course, stability is relative, depending on the time scale involved. Social relations may 

be stable for months or years but perhaps not for decades.  
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Figure 3: Validity issues deriving from mismatch of aggregation and construct 
stability 
 

The combination of these two characteristics of network data temporality and construct 

stability may threaten the construct validity of network measures created when 

aggregating digital trace data across time (Braha & Bar-Yam, 2006). Figure 3 shows 

illustrative data; the top line (dotted) shows a relatively stable construct, the lower line 

(solid) shows a construct that varies considerably over time. The sections marked in 

grey show potential snapshots.  

The top line in the figure shows a case with no significant concerns: the constructs of 

interest are stable, so the aggregation of interactions in the form of snapshots or 

aggregated measures will yield similar results. For example, networks of familial 

relationships will show more-or-less the same links in both snapshot and aggregated 

representations, with the exceptions of the addition or subtraction of actors over time 

due to birth, death, marriage and divorce. 
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However, if the constructs are less stable (the bottom line), then a snapshot will measure 

the network configuration only at that point in time, assuming that the snapshot size and 

the construct's stability are appropriately matched. In Figure 3, snapshots taken in the 

three grey areas approximate reasonably well the up-and-down cycle of the measure. 

Although the network structure may be different at other points in time, the measure may 

still provide useful insights into social processes. Concerns would arise, however, if data 

were only taken at the first and third snapshot, since the result would be an invalidly high 

and consistent measure. 

The case of aggregating data about unstable constructs is the most problematic. There 

are two issues here. The first issue is relatively well known: the average of a network 

measure taken over time will smooth out important variance. The second issue is less 

well understood and is more clearly the result of aggregating events and drawing 

networks: the resulting network may have very different structural properties depending 

on how events are aggregated.  

For example, Howison et al. (2006) examined centrality in open source development 

teams initially by aggregating interaction data across the life of projects. They were 

surprised to discover that while some projects had only a few or just one highly central 

developer, as hypothesized, other projects had many apparently central actors, 

suggesting a relatively decentralized team structure. However, when they examined the 

data dynamically, they discovered that a much greater number of the projects in fact 

exhibited a high degree of centralization at any point in time, but in some, the most 

central actor would change from time to time. In other words, the role of lead developer 

was unstable in some projects. It was only when this succession of centralized networks 

were aggregated that the resulting network appeared to have multiple central nodes, and 

thus to be decentralized, as illustrated in Figure 4. The choice to measure centralization 
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on an aggregated network assumed that this construct was relatively stable, leading to 

invalid conclusions about the projects. 

Time 1
Centered on initial leader

Time 2
Future leader arrives

Time 3
Centered on new leader

Collapsing ccross time
reduces centralization

Out degree centralization:
1.0

Out degree centralization:
0.96

Out degree centralization:
1.0

Out degree centralization:
0.8

 

Figure 4: Aggregation of data with unstable construct (here leadership) artificially 
decreases centralization (adapted from Howison et al., 2006) 

 
This concern is primarily an issue of construct validity: what period of aggregation leads 

to an (approximately, usefully) “correct” understanding of the network? Another way to 

think about this would be to ask, “Over what period of time does the network process of 

interest play out?” or, depending on one’s stance on how networks influence action, 

“Over what period of time does network structure come to influence action, such that the 

actions validly approximate the network that influenced them?” While these are primarily 

issues of construct validity, they can also be thought of as issues of measurement error 

and thus also relevant to internal validity. 

One approach to dealing with this issue, especially for dynamic concepts, is to vary time 

windows to locate a periodization over which one’s construct is more reliable. Olson and 

Carley (2011) describe a method (using Cohen’s Kappa and information loss) to explore 

the reliability of measures over time and identify window sizes in which measures are 

most reliable. Such methods, in combination with arguing from theory about the likely 
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length of time over which the network process of interest plays out, would help in arguing 

that research has avoided this threat to validity. 

Table 7: Temporal Mismatch 
Decision Over what period will events be aggregated to form networks (and 

thus measure network concepts)? 

Validity Issue/Type A dynamic construct may appear invalidly appear static if 
measured with long aggregated networks; an otherwise stable 
construct may invalidly appear dynamic if measured on too short a 
time scale.  
Aggregation over long time scales may produce networks with 
different structural properties than the network experienced by 
participants. 

Cause Trace data captures evidence of dyadic links; a network must be 
an aggregation of such links and thus over some time period. 
Constructs may influence action in ways that are only visible over 
some particular time-scale. 

Examples Howison et al, 2006 

Recommendations Assess theoretical stability of construct and likely time-scale. 
Conduct sensitivity analyses to assess effect of different periods of 
aggregation, using agreement statistics to measure impact. See 
Olson and Carley (2011). 
See Braha and Bar-Yam (2006). 

3.4.2. Issue 8: Network tool effects 

Social Network Analysis is greatly facilitated by a wealth of software tools that implement 

a wide range of algorithms. Popular tools include UCINet (Borgatti, Everett, & Freeman, 

2002), Pajek (de Nooy, Mrvar, & Batagelj, 2005), the SNA package for R (Butts, 2008), 

and NodeXL (Hansen, Shneiderman, & Smith, 2010). In general, these tools are 

excellent in terms of validity: they help researchers avoid errors that might stem from re-

implementation of algorithms and provide consistency and reproducibility across 

different researchers. 

Nonetheless, the convenience these tools provide can also mask threats to validity in 

their use. Firstly, programs use subtle variations of algorithms and slightly different 
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names for the same algorithm, potentially leading to confusion and misinterpretation of 

results. 

Secondly, tools make the (reasonable) assumption that the data provided are 

appropriate for the calculation requested. Just as with more familiar assumptions in other 

statistical techniques, such as cell size for ANOVAs or normality for some types of 

regression, a tool may or may not highlight these assumptions; for SNA it is rare for the 

tools to do so. For example, some very common algorithms (such as degree 

centrality/centralization) work properly only with dichotomous data (binary links without 

weighting). Tools may therefore assume that the user intends that the data be 

dichotomized. If valued data are presented to such routines, the tool may silently 

introduce dichotomization at strength >= 1, a decision that can threaten validity (see 

Issue 4, above), or may simply carry out the calculations with inappropriate values.  

For example, while the definition of degree is operationalized by counting the number of 

links, the network degree centralization function in the SNA package in R sums the 

values in the matrix by default. If the link values are binary (unweighted), this is an 

equivalent approach, but if they are weighted then the function silently performs a 

weighted centralization function, a much less commonly understood and interpretable 

measure (see Opsahl et al. (2010) for a discussion of this and alternative measures). If 

the link values are not explicitly ignored, the software produces a result for degree 

centralization that is quite possibly not what the user intended. 

Finally, and most subtlety, algorithms embedded in tools may make assumptions about 

the nature of the data, assumptions that interact with issues discussed above to produce 

threats to validity. For example, a class of algorithms, including eigenvector centrality, is 

justified through logic that treats the network as a topology and constructs all possible 

paths (or an infinite length random walk across those paths) from the network 
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representation. Similarly closeness, betweenness, and many grouping algorithms make 

assumptions that long paths are relevant and possible. The computation can thus invoke 

paths that may not be justified by the theory in use, creating validity issues (see Issue 6, 

above, and Issue 9, below). The design of network algorithms is a situated practice, 

drawing on particular types of networks and network processes; a mismatch between 

their internal logic and network characteristics can introduce validity issues. 

In short, just as with any statistical package, the convenience of tools does not eliminate 

the responsibility of the authors and reviewers to be sure that they are used 

appropriately. Tool authors are generally careful to provide references that describe their 

algorithms in detail. Authors should find such references and examine the assumptions 

of the algorithms. Authors should build confidence that they are using the tools correctly, 

for example, by manually calculating a measure for a small prototype network and 

comparing it to the tool’s answer. An alternative is to calculate the same measure with 

multiple tools and carefully understand the reasons for any differences. Authors should 

be prepared to provide complete step by step descriptions of their tool use (or, ideally, 

scripts) to help reviewers and readers judge its validity and to enable others to replicate 

their method (such descriptions are known as research protocols in the natural sciences, 

and typically published as online addenda.) Careful consideration of validity issues 

stemming from tool use will improve the validity of network analysis. 

Table 8: Network tools 

Decision What SNA tool/software will be used? Is the algorithm cited? What 
assumptions about the data is the tool making? 

Validity Issue/Type Multiple 

Cause Software tools perform much of the “heavy-lifting” in network 
analysis, but algorithms may be influenced by default settings or 
subroutines that encode hidden assumptions (e.g., silently 
dichotomizing valued links). 
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Examples Errors such as these are not visible in papers and can’t be checked 
unless all data and analysis scripts are provided. We encountered 
these issues in our own research and confirmed that other users 
were not aware of these issues. 

Recommendations Build confidence through manual calculation, tool triangulation and 
known outcome tests. 

Methodologists and tool builders should make the assumptions 
contained in algorithms and tools explicit. 

3.5. Aligning Measure and Construct 

Measuring a theoretical construct using network data is, of course, the reason to 

undertake the work in the first place. This alignment is between the concrete and the 

abstract; the argument that a network metric is an appropriate measure of a construct 

ought to be carefully considered and its validity explicitly argued. In the validity 

framework of Cook and Campbell this issue very closely matches construct validity. In 

this sense, a network measure is an operationalization of a construct and general 

recommendations for demonstrating construct validity apply, including face validity, 

congruent validity and discriminant validity. 

Face validity. Face validity is perhaps the simplest yet most overlooked aspect of 

validity. An excellent candidate for showing it is to provide concrete narrative examples 

of the hypothesized process drawn from the dataset. As discussed above in Issue 1, the 

digital trace data often provide rich data as a basis for such narratives, which might be 

effectively complemented by interviews. Even a single clear case of a hypothesized 

process, together with an argument that the proposed networks and measures validly 

measure it, can go a long way toward exposing validity concerns. Once exposed, these 

concerns can be dealt with explicitly enhancing the usefulness of the approach. If 

authors cannot describe a single clear case from their dataset, skepticism is warranted. 

Congruent and discriminant validity A useful strategy for demonstrating the validity of 

any measure is to show congruence between that measure and other, independent, 
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measures of that construct. This simultaneously avoids mono-method bias and argues 

for the validity of a proposed measurement technique. For example, if one intends to use 

network centrality as a measure of leadership then a demonstration that this measure 

has adequate agreement with other appropriate measures, such as lists of those 

nominated by a community as leaders on their web homepage, or interview or survey 

results would be useful. If such agreement is not forthcoming, then the author ought to 

be able to explain why their measure is different yet still appropriate. Similarly, it is 

appropriate to show that one’s measure is relatively unrelated to conceptually dissimilar 

constructs, such as showing that leadership is distinct from simple counts of activity 

(unless one’s theory of leadership directly involves counts of activity). 

3.5.1. Issue 9: Data completeness and inference 

The basic structure of many social network theories hypothesizes an unobservable 

social relationship (the construct of interest) that leads to various kinds of interactions 

that can be observed, for example a friendship relationship that leads to observable 

conversations, or an information sharing relationship that leads to observable questions 

and answers. The existence of the relationship is thus be inferred from the observed 

interactions. Furthermore, in offline observational data collection, researchers expect to 

observe only a fraction of the interactions between individuals; there are understood to 

be many more interactions than periodic or partial observation can measure. Therefore, 

the observation of a specific interaction that is indicative of a relationship can be 

assumed to indicate the presence of many similar unobserved interactions. The logic of 

these inferences is as shown at the top of Figure 5, below. 
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Figure 5: Comparison of inferential logic applied to partial and complete data 
 
In other words, the interactions between members of a community can be thought of as 

a population generated by the social relationships from which the particular observations 

(or reported links) are somehow sampled, allowing the application of inferential logic to 

make claims about this population of interactions and the relationships they may provide 

evidence for. For example, in studying knowledge sharing, the analyst might observe a 

set of spoke-to interactions between two participants and interpret this as evidence for 

the existence of a relationship of interest, inferring the likely existence of other, 

unobserved, spoke-to interactions that could provide channels for information 

transmission, influence or other network processes. In many face-to-face groups, it 

might further be assumed that the intensity of interactions are all roughly comparable, 

and that all interactions are at least potentially two-way (i.e., an assumption about the 

likely distribution of interactions in the population of interactions), which again facilitates 

inferences about the population from the sampled interactions.  
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In contrast, with digital trace data where the Information System archives every 

interaction, and when there is good reason to believe that group only interacts via this 

platform, the data provide complete evidence of interactions, a census rather than a 

sample of interactions, as shown at the bottom of Figure 5. This situation is actually quite 

common in studies of online communities, many of which only exist virtually. In this 

situation, the hypothesized relationship continues to generate events but rather than this 

producing an unknown population from which the observations are a sample, the 

researcher can access the full population of events that did, in fact, occur.  

On the one hand, the completeness of the data is a good thing, as it allows more definite 

conclusions to be drawn based upon the observed dynamics. Researchers using these 

data have a rare and enviable degree of certainty that the data are comprehensive. On 

the other hand, researchers using such data must thus be wary of the human tendency 

to infer structure from interactions and assume that evidence based on a set of events is 

representative of deeper meaning. In the case of trace data, what you see may be all 

there is. There is no need to postulate that the observed interactions represent a partially 

hidden pattern of interactions; the pattern if any is in fact quite explicit.  

Furthermore, when data are from the full population, techniques designed to work with 

samples can give meaningless results. In the Cook and Campbell framework this 

situation poses an issue of statistical conclusion validity, albeit one that rarely arises: 

researchers can readily acquire sufficiently complete data that inferential statistics or 

thinking are no longer necessary or appropriate, and this requires thinking differently 

about the analysis. In particular, depending on the construct of interest, inappropriate 

use of inferential logic potentially poses a threat to validity in a wide range of analyses 

(e.g., Aral et al., 2006; Kane, 2009; Merlo et al., 2009; Wasko & Faraj, 2005). 
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As a concrete example, consider again a study of information sharing behavior. In a 

face-to-face group, the observation that Person A spoke with Person B in Week 1 of a 

study might be taken as evidence of a relationship from which the analyst might infer the 

likely existence of other unobserved communication events, forming a two-way link 

through which information could travel. The validity of this measurement relies on the 

inference that if Person A and B are observed to speak at some point in time, Person A 

likely speaks with Person B at other times, generating a population of interactions, as 

shown at the top of Figure 5. Indeed, this inferential logic is behind the approach of 

creating a network as shown in Figure 2 having observed only the second set of 

interactions: assuming that the additional interactions in the first set are likely to have 

occurred at some unobserved point in time, and so implicitly including these interactions 

in the measurement.  

Contrariwise, if the researcher is reasonably confident of having observed all interactions 

in the group (the situation at the bottom of Figure 5) this form of inferential reasoning and 

conclusions based on it are invalid. Regardless of any relationship that may be 

suggested by Person A speaking to Person B in Week 1, if the data do not show that the 

two speak again, then there is no evidence of a two-way information channel; indeed, 

the data rule it out, at least in the period under observation. 

Inappropriate use of inferential logic also poses a threat to some studies using 

association network data. While association networks are often used to indicate 

overlapping interests, they are sometimes used in ways that require them to be a proxy 

for interactions (e.g., Daniel & Diamant, 2008; Grewal, Lilien, & Mallapragada, 2006; 

Kane, 2009). For example, researchers might use joint membership in a project as a 

measure of possible knowledge sharing among members. Such an inference is 

unnecessary, and may in fact be invalid, if detailed interaction data are available that 
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circumscribes the possible paths or when temporal overlap data regarding membership 

is available (e.g., Christley & Madey, 2007; Merlo et al., 2009). Brynjolfsson et al. (1994) 

and Hahn et al. (2008) study interaction paths directly, rather than networks, and so are 

notable for avoiding this issue. 

In summary, interpretations that tacitly or explicitly rely on inferential logic should be 

considered suspect when it is likely that the data show close to the totality of 

interactions. Unfortunately, as demonstrated in Figure 2, making this assumption can 

occur in the very act of drawing the network, where impossible indirect paths are 

introduced to the network by temporal aggregation. Similarly, as mentioned above, some 

network algorithms have sampling logic built in because they work by back-constructing 

a set of all possible paths from a network diagram, only then using the paths to calculate 

the network measure. 

In different contexts, this issue might be less of a problem. First, in some circumstances 

it might be quite reasonable to assume that the observed events are an incomplete 

record and that additional interactions occurred, perhaps by unrecorded media such as 

instant messaging, private email or face-to-face interactions. Second, even fully 

complete data for one period does not circumscribe all possible interactions that could 

be generated from a relationship (see Discussion below), so complete data from one 

temporal period may be considered a sample of all possible interactions and thus 

predictive of future unobserved interactions. Such sampling logic, however, must be 

argued to be reasonable; there is nothing in the construction of a network that relieves 

the researcher of that responsibility. Further, some network properties may be robust to 

certain patterns of missing data, and appropriate with smaller proportions of the network, 

while others may not be (for detailed discussion see Latapy & Magnien, 2008). 
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Table 9: Data completeness and inference 
Decision Is my data a sample or a census of activity? 

Validity Issue/Type Statistical conclusion validity 

Cause If the data approaches a census then sampling logic may be 
inappropriate. Sampling logic, realized in some SNA algorithms, 
may introduce and interpret events known not to have occurred. 

Examples Daniel & Diamant (2008); Grewal et al. (2006); Kane (2009) 

Recommendations Consider carefully how sampling logic is employed and argue for 
its appropriateness. 
Consider whether network algorithms introduce events known not 
to have occurred. 
Consider whether associations are valid proxies for interactions (if 
the association network is being used in such a way). 
Consider using methods in Brynjolfsson et al. (1994) and Hahn et 
al. (2008) 

3.5.2. Issue 10: Uncritical importation of measure interpretation 

The final link is between measures and interpretation as a theoretical construct. A 

regrettably common threat to validity arises when researchers import interpretations of 

measures from previous literature without considering whether the underlying networks 

(nodes and links) for which these measures and interpretations were developed are 

conceptually similar to the context and type of data in the present study. While this 

problem could occur with any study, it appears to be particularly tempting when working 

with found, rather than designed, data sources, and thus is particularly likely to affect 

work with digital trace data. Importing interpretations of measures based on survey data 

to networks built from trace data are particularly common and often problematic. 

Early work, such as Ahuja and Carley (1999), makes their importation of concepts 

explicit and considers it critically, outlining findings from offline environments and 

providing a rationale for their applicability in online contexts, specifically questioning 

whether the concepts and measures will be appropriate to the new environment. Other 
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works, such as Wu et al. (2007), have been less careful to problematize their adoption of 

interpretations based on earlier work, instead making claims such as “Past research in 

social networks has shown that centrality is an important indicator of group performance” 

and citing as warrant an SNA classic such as Freeman et al. (1979). The truth, or 

usefulness, of this statement depends on how cohesive the entire chain of reasoning is: 

the meaning of centrality depends strongly on decisions about nodes, links and 

measures (e.g., exclusive channels of communication vs. broadcast communication), all 

taken in a particular theoretical context. In short, the environment in which the data were 

generated influences the interpretation of network measures. Unfortunately, many 

studies are surprisingly vague about the theoretical rationale for the choice of a 

particular construct and its connection to the data, relying on ill-defined notions of 

general, abstract ties as though any graph structure, however defined, is a valid proxy 

for the same abstract concepts (i.e., mistaking SNA for a theory rather than an analysis 

technique).  

Researchers and reviewers should be particularly aware of this issue and work to avoid 

the importation of an interpretation from earlier studies without an explicit argument for 

its appropriateness in terms of theoretical cohesion between node, links, measure and 

construct. It is possible for researchers to hold a considered position that any set of 

connections, however defined and measured, operate in a usefully similar manner, but if 

so they ought to be explicit about this, as it is an extreme position. It is certainly not 

sufficient to imply that since SNA techniques are being used, importation is prima facie 

valid. 
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Table 10: Inappropriate importation of network measure interpretations 
Decision On what logic are interpretations of networks measures based? 

Validity Issue/Type Construct validity 

Cause The interpretation of network measures are associated with 
networks built from particular data and may not be valid outside 
their original context. 

Examples Ahuja & Carley (1999); Wu et al. (2007) 

Recommendations Understand and explicitly argue for a correspondence between 
definitions of nodes, links and network measures based on network 
processes. 
Explicitly argue that an interpretation from earlier SNA studies is 
appropriate, given your data. 
Draw on Borgatti and colleague’s taxonomy of network processes 
(see Discussion). 

4. Discussion: Maintaining overall theoretical cohesion 

While we have presented them separately, the issues raised above are, of course, not 

independent. Researchers employing SNA (with or without digital trace data) have to 

maintain cohesion between all of these logical links in order to mitigate validity issues. 

The theory with which the researcher is working is fundamental to this task. In particular, 

as we argue below, the type of network process entailed by the theory binds together the 

logical links and brings cohesion to them. This cohesion is the central bulwark against 

validity issues. 
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Figure 6: Network Process provides theoretical cohesion to SNA decisions 
 
 

Of particular assistance in this endeavor is work by Borgatti and colleagues that builds a 

taxonomy of tie types and relevant network processes. The first distinction is between 

structuralist and connectionist perspectives on networks (Borgatti & Foster, 2003) and 

the second is a taxonomy of types of network processes (Borgatti et al., 2009). 

4.1. Structuralist vs. connectionist views of networks 

With regards to the first, the structuralist view focuses on ties as a topology, while the 

connectionist perspective sees ties as instances. The structuralist view is that the 

network describes a topology on or through which the phenomena of interest are 

assumed to occur. The connectionist view is that the links do not form the topology (what 

could occur), but instead represent the actual events of interest (what occurred). Trace 

data, as defined in this paper, is inherently closer to the connectionist perspective: it 

represents instances. By contrast, research based on asking people about social 

relationships (the traditional approach to SNA) is typically structuralist: the surveys 

attempt to measure structure that, from time-to-time in some manner, influences events.  

These two views require different ways of interpreting the data, but are often confused, 

leading to validity issues, as described above. Unfortunately, when working with trace 
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data, it seems there is a tendency to take evidence of instances (what was) and 

transmute that uncritically into evidence of topology (what could be/have been). To avoid 

this problem, researchers should be clear about whether their theory is a theory about 

structures or instances. If one’s theory requires understanding of structures but one has 

evidence of events, then one must reason from the instances to the structures. Such 

reasoning is not impossible, but it requires an explicit theory of how structures are 

created by events, and how events create structures. This consideration suggests that 

relevant theories would be those grounded in structuration or practice theory (e.g., 

Contractor et al., 2000; Giddens, 1984; Orlikowski, 1996).  

The difficulties in linking data about events to evidence of structures underlie many of 

the issues discussed above, including issues in deciding between single or multiple link 

types, coping with intensity, coping with temporal aggregation and temporal mismatch. 

This distinction also helps understand why importing interpretations of network 

measures from earlier work is problematic: if the interpretations are based on measuring 

evidence of structure (as many are), then their logic breaks down when working with 

data which are instances.  

4.2. Network mechanisms 

Theoretical cohesion can be further improved by a consideration of types of network 

mechanisms (which may play a role in many different processes). Borgatti et al. (2009) 

identifies four types of network mechanisms: transmission, adaptation, binding and 

exclusion. Transmission networks involve the transmission of something between 

network nodes, adaptation (or similarity) networks posit links based on similar 

experiences of nodes, networks based on binding mechanism results when “social ties 

can bind nodes together in such a way as to construct a new entity” with its own 

properties. Finally, an exclusion mechanism is that involving a “competitive situations in 
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which one node, by forming a relation with another, excludes a third node.” Network 

mechanisms are more specific than network processes: for example, influence could be 

conceptualized as a network process, occurring through multiple mechanisms, including 

information transmission, similarity binding and exclusion. 

Borgatti (2005) provides detail on transmission mechanisms, the most common type of 

mechanism considered in IS. These mechanisms involve the transmission of something 

between network nodes, and can be classified according to whether that thing is thought 

to move by a copy mechanism (such as ideas) or a move mechanism (such as money), 

as well as the type of path through the network that the thing follows (e.g. shortest path, 

random path or parallel paths). Each mechanism implies different ways of measuring 

links and different processes occurring over these links, and different theories, when 

carefully considered, involve different mechanisms. Borgatti and colleagues argue that a 

valid match between mechanism and network construction—which can only come from 

a strong theoretical understanding—is key to choosing the appropriate measures, as 

“different measures make implicit assumptions about the manner in which things flow in 

a network” (Borgatti et al., 2009). 

While getting these interpretations right is not trivial even within flow networks, it is a 

further problem when measures designed for analyzing other network mechanisms are 

applied. For example, using a grouping algorithm that has its logic in a similarity 

mechanism to data based on a logic of flow will lead to invalid conclusions. Mis-match 

between logics and algorithms means that “we lose the ability to interpret the measure ... 

or we get poor answers” (p. 56). Getting such matching correct means grappling with the 

inter-connections between all the decisions we consider above. 

We therefore recommend that researchers explicitly describe the mechanism they 

expect to see and use these as the basis for arguing for the overall cohesion of their 
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network analysis decisions, arguing from theory at each decision. Researchers may find 

Borgatti’s taxonomy useful, or seek other authors who have concentrated on the links 

between networks and theoretically derived processes, such as Monge and Contractor 

(2003). Reviewers and editors may find referring authors to these contributions will 

assist the authors in making explicit their assumptions about network processes and the 

extent to which their network operationalizations validly capture these processes, 

providing the theoretical binding that joins the links in the chain of reasoning. 

5. Conclusions 

The combination of exciting phenomena based on digital interactions, copious data, 

interesting research questions and appropriate methods creates excellent opportunities 

for research. Social network analysis with digital trace data constitutes a “measurement 

revolution” (Kleinberg, 2008) because it provides a way of harnessing the data contained 

in online archives and using it to operationalize concepts of deep theoretical interest. 

Nonetheless, this paper sounds a strong note of caution about the manner in which SNA 

concepts are translated to research using digital trace data. Through an analysis based 

in a detailed consideration of the types of data available and widely used, the paper has 

argued that digital trace data are of a different nature than that used in earlier studies 

using SNA. While there exists a literature on validity issues arising from these earlier 

methods, despite the surge in research using SNA with digital trace data, a 

corresponding validity literature has not emerged. This paper is a contribution to such a 

literature. It raises a set of pernicious validity concerns which extend throughout the links 

in the chain of reasoning, and thus the decisions researchers must take to conduct 

network analysis, iterating from theoretical interests, to data collection, through initial 

transformation and reduction to networks, and following the chain of logic from construct, 



   53 

operationalization and analysis of those networks. Information Systems researchers 

specifically have an excellent opportunity to contribute, drawing on their understanding 

of the contingent impact of systems, their grasp of structurational theories, and their 

particular interest in the phenomena generating these digital trace data. 

By providing recommendations and highlighting studies that deal well with these 

challenges we hope to improve the quality of SNA based research using digital trace 

data, especially in terms of theoretical cohesion, and so position the field to make 

important contributions to the “twenty-first century science” of network analysis of online 

activity (Watts, 2007). 
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