
111

Design and Preliminary Evaluation of MIDST, a System to
Support Stigmergic Coordination in Data-Science Teams

KEVIN CROWSTON, JEFFREY S. SALTZ, AMIRA REZGUI, and YATISH HEGDE, Syracuse
University
SANGSEOK YOU, HEC Paris, France

We describe the design, implementation and preliminary evaluation of MIDST, a system to support stigmergic
coordination in data-science teams. We first define a theoretical model of stigmergic coordination, that is,
coordination supported by a shared work product. We hypothesize that stigmergic coordination depends on
three socio-technical affordances, the visibility and combinability of work, along with defined genres of work
contributions. We describe the implementation of a system, MIDST, that supports these affordances and that
we expect to support stigmergic coordination. We conclude with an initial assessment of the impact of the
tool on the work of project teams of three to six data-science students. Our initial findings suggest that even
using an early version of the system, MIDST users perceived improved workload fairness and fewer team
output coordination issues, while spending less time on explicit coordination, suggesting that the system was
in fact useful in supporting stigmergic coordination, supporting our hypotheses.

CCS Concepts: • Human-centered computing→ Computer supported cooperative work; Asynchro-
nous editors; Empirical studies in collaborative and social computing; • Information systems →
Data analytics.

Additional Key Words and Phrases: stigmergic coordination, translucency, awareness, data-science teams

ACM Reference Format:
Kevin Crowston, Jeffrey S. Saltz, Amira Rezgui, Yatish Hegde, and Sangseok You. 2019. Design and Preliminary
Evaluation of MIDST, a System to Support Stigmergic Coordination in Data-Science Teams. Proc. ACM Hum.-
Comput. Interact. 2, CSCW, Article 111 (November 2019), 25 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Data science is an emerging discipline that combines expertise across a range of domains, including
software development, data management and statistics. Data-science projects typically have a goal
of identifying correlations and causal relationships, classifying and predicting events, identifying
patterns and anomalies and inferring probabilities, interest and sentiment [25]. A common data-
science tool is R [1]: analyses are performed by writing what are essentially programs in the R
language that take data as input and output analysis results. While small analyses can be performed
by an individual, larger projects require teams of analysts working together.

Much has been written about the development of new data-science algorithms that can be used
to generate useful insights. Unfortunately, less has been written about other challenges that might
be encountered when working as a data scientist [57]. Data-science projects need to focus not

Authors’ addresses: Kevin Crowston, crowston@syr.edu; Jeffrey S. Saltz, jsaltz@syr.edu; Amira Rezgui, arezgui@syr.edu;
Yatish Hegde, yhegde@syr.edu, Syracuse University, Hinds Hall, Syracuse, New York, 13220; Sangseok You, you@hec.fr,
HEC Paris, 1 Rue de la Libération, Jouy-en-Josas, France, 78350.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
2573-0142/2019/11-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 111. Publication date: November 2019.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


111:2 Kevin Crowston, Jeffrey S. Saltz, Amira Rezgui, Yatish Hegde, and Sangseok You

only on algorithms but also on people, process and technology [30, 31]. The need is recognized
for more guidance on how data scientists can work together. In particular, the main challenge in a
data-science project is task coordination [29].

The goal of the project described in this paper is to better support coordination in data-science
teams by transferring findings about coordination from another setting, namely free/libre open
source software (FLOSS) development, to the setting of data-science teams. We do so by: 1) identi-
fying a novel form of coordination that appears to be part of the success of FLOSS development,
namely stigmergic coordination [9], 2) theorizing socio-technical affordances that support stigmer-
gic coordination in FLOSS and considering how these might be applied in a data-science setting, and
3) developing a system that implements these affordances and which we therefore hypothesize will
support stigmergic coordination. We conclude with 4) a preliminary evaluation of the system. The
work thus provides not only a useful system but also a test of our theory of stigmergic coordination.
However, we emphasize that the evaluation is just preliminary and that the main contribution of
the paper is a theory-driven system design and implementation (i.e., steps 2 and 3).

1.1 Stigmergic coordination
In this section, we draw on prior work on FLOSS coordination to describe the paradox that
motivates the project: the apparent ability of distributed teams to coordinate with little or no
explicit communication. This finding emerged from studies of how FLOSS developers coordinate
[10, 37, 38]. Somewhat unexpectedly, these studies found little evidence of overt coordination:
FLOSS developers seemed to rarely communicate about coding tasks. The lack of evidence was
surprising considering the transparency of FLOSS projects. It was expected to find direct, discursive
communication in email or other discussion fora through which developers interact but there
were few examples. The lack of direct interaction around the work has echoes in other research
findings. For example, research has found that developers mostly self-assign work rather than have
it assigned to them [20, 21] and often make decisions about code without explicitly evaluating
options [33, 34]. Interestingly, when developers do discuss their work, they often refer directly to
the software code.
In light of these findings, researchers have theorized that FLOSS development work can be

coordinated at least in part through the code, the outcome of the work itself, a mode of coordination
analogous to the biological process of stigmergy [32]. Heylighen defines stigmergy thusly: “A
process is stigmergic if the work... done by one agent provides a stimulus (‘stigma’) that entices
other agents to continue the job” [35]. Accordingly, stigmergic coordination can be defined as
coordination based on signals from the shared work. For example, ants follow scent trails to food
found by other ants, thus assigning labour to the most promising sources without the need for
explicit interaction. The organization of the collective action emerges from the interaction of the
individuals and the evolving environment, rather than from a shared plan or direct interaction.
While stigmergy was formulated to explain the behaviour of social insects following simple

behavioural rules, it has also been invoked to explain human behaviours: the formation of trails in a
field as people follow paths initially laid down by others (similar to ant trails), or markets, as buyers
and sellers interact through price signals [52]. For humans and intelligent systems, the signs and
processing can be more sophisticated than for insects [53]. For example, the shared environment
can be a complex workspace including annotations. Tummolini & Castelfranchi [68] developed
a typology of different kinds of messages possible from signs, such as having the ability to do
something, having done something or having a goal. In CSCW, Christensen [16–18] discussed how
architects and builders coordinate their tasks through “the material field of work” such as drawings,
building on earlier work in CSCW focusing on coordination through the “field of work”, including
changes in shared databases [59].

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 111. Publication date: November 2019.



Stigmergic Coordination with MIDST 111:3

Stigmergy has been suggested in particular as an interpretation of how FLOSS developers
coordinate [9], what Kalliamvakou et al. called a �code-centric collaboration� perspective [39].
FLOSS developers mostly work with the code that they are developing, managed with source
code control systems such as Git that provide status about the state of the code and development.
Stigmergy has also been argued as a mechanism in online work more generally. Elliot [27] argued
that �[c]ollaboration in large groups is dependent on stigmergy,� with the speci�c example of
authoring on Wikis.

The question then is how work products can support coordination. From this perspective, we
state a more speci�c question for our theorizing in this paper: What socio-technical a�ordances of
shared-work systems enable stigmergic coordination? By socio-technical a�ordances, we mean
the features of the technology used and the practices around that technology. For example, the
source-code control systems commonly used by FLOSS developers provide noti�cations of code
submissions; details of the implementation of this technical feature enable other developers to
maintain awareness of the state of the code to support coordination. To interpret these change
messages, developers likely need some level of technical skill and mental models of the code
structure, another kind of a�ordance. They may also be accustomed to creating code in a way that
is easier for others to interpret. The inherent nature of the coding task itself may create the need
for speci�c kinds of coordination that are particularly amenable to stigmergy. If we can identify
the socio-technical a�ordances found in FLOSS development, we may be able to develop a system
to support them, thus enabling stigmergic coordination in another context, meaning that people in
that context could also achieve well-coordinated work with less explicit e�ort.

1.2 Related CSCW concepts

Because the goal of this paper is to present a theory-driven system design, we discuss both related
theories (in this section) and related systems (in a later section). Stigmergy is related to other
concepts of long-standing interest in the �eld of computer-supported cooperative work (CSCW).
First, there has been a stream of research in CSCW and elsewhere that demonstrates the importance
of team member awareness for supporting collaborative work [e.g.,14, 15, 17, 26]. Though they
are not identical, there is clearly a close relationship between the two ideas about supporting
collaboration. Christensen [17] described actions a person might take to make a co-worker aware
of an issue, and so distinguishes awareness from stigmergy, as �stigmergy does not entail making a
distinction between the work and extra activities aimed solely at coordinating the work�, such as
drawing a co-worker's attention.

Similarly, in contrast to active awareness (one participant calling for the attention of another),
Dourish & Bellotti [26] argued for the importance of passive awareness mechanisms, which can
be interpreted as supporting stigmergy. Other researchers have proposed awareness displays that
allow a team member to develop an awareness of the actions of other team members. Carroll
and colleagues [14, 15] examine how awareness can support development of common ground,
community of practice, social capital and human development in team. In this project, we focus
more narrowly on how awareness of work supports coordination.

A second related concept is system translucency [28] or transparency [19, 23, 24, 63], mean-
ing visibility of details of organizational processes or functions. Consistent with our analysis of
stigmergy, Stuart, et al. [63] analyze transparency as a form of information exchange or communi-
cation. They note that technology enables new forms of transparency, e.g., as in GitHub, a software
development site [22] that provides real-time updates on what other developers are doing. In other
words, transparency is a system feature that might support awareness. Researchers have noted
similar problems with awareness and transparency, such as the potential for information overload

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 111. Publication date: November 2019.



111:4 Kevin Crowston, Je�rey S. Saltz, Amira Rezgui, Yatish Hegde, and Sangseok You

from having to review too much information or that making too much visible may inhibit the
willingness to share work [7, 23].

As with stigmergy, system transparency provides information that can in�uence how people
work. Dabbish, et al. [24] note speci�cally that transparency is helpful for coordination. They
list numerous uses of visibility information, such as including dependencies with other projects
[23]. They further note that being able to see something means �much less need for routine
technical communication� [23], suggesting that transparency is substituting for explicit coordination.
Research on visibility and transparency can clearly be quite informative for designing systems to
support stigmergic coordination. However, this stream of research has not speci�cally focused on
the socio-technical a�ordances that enable users to make sense of and to use the provided stigma
to support coordination, which is the goal of the current theorizing. For example, given the large
number of possible signs available, how do developers decide which to attend to?

A third related concept in the CSCW literature is provenance, i.e., the history of a piece of
information. Rather than being explicitly and independently created, provenance of documents
is built as the documents are changed, or recorded from interaction as the documents are used,
i.e., it is a kind of stigma. Hill et al. [36] and Wexelblat & Maes [69] pointed out that knowing how
others have interacted with a piece of information can be informative for future interactions with
it. Similarly, knowing the history of a document's development is important in evaluating and
knowing how to use it.

In summary, prior research on stigmergic coordination has noted that the shared work product
itself can provide the information necessary for coordination. However, this prior work has not yet
addressed the question of what socio-technical a�ordances of shared work systems enable stigmergic
coordination. Research in CSCW on awareness, translucency, transparency and provenance provides
suggestions for important features, but does not yet fully answer the question.

2 LITERATURE REVIEW

In this section we build an initial theory of the socio-technical a�ordances that can support
stigmergic coordination, starting with the evidence from FLOSS development and extending to our
data-science project context. We suggest that these characteristics of systems for sharing work will
support coordination of the work, thus distinguishing a system for stigmergic coordination from
systems for explicit coordination on the one hand and systems for simple information sharing on
the other.

To theorize what a�ordances of work support coordination, we turn to the literature on docu-
ments and work [51]. Code (the shared work in the case of FLOSS development and data science) is a
semiotic product recorded on a perennial substrate that is endowed with speci�c attributes intended
to facilitate speci�c practices [72], thus making it a kind of document. Code di�ers from other kinds
of documents by serving two audiences, one being a machine, the other programmers. However,
we focus on the latter, describing properties of code that allows developers or data scientists to
share their work with colleagues, and to read, understand and respond to their intentions.

2.1 Documents enabling coordination

Scholars have described how documentation and other accounts of work play a central role in
the coordination of work [11, 12, 48� 50, 61, 66, 67]. These perspectives have long pointed to the
double role of documents as both `models of' work and `models for' work. For the �rst, documents
provide an account of reality as workers manipulate text and other symbolic structures so as to
parallel them with reality. For example, data scientists may carefully document the code they have
constructed to create a report of the work (analysis) done. This view of work as a document can

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 111. Publication date: November 2019.



Stigmergic Coordination with MIDST 111:5

be seen in the emerging concept of data-science notebooks [41], which integrate code, comments
about the code and the results / visualizations of the code.

But documents also provide a basis from which people further manipulate the world. For exam-
ple, data-science reports are not simply accounts of work completed: the report, no matter how
documented, can also guide ongoing work by suggesting what is left to be done, such as suggesting
an attribute requiring further analysis. Taking inspiration from Smith [61] and Bakhtin [4], we
suggest that a work product is rarely completely original; it is always an answer (i.e., a response)
to work that precedes it, and is therefore always conditioned by, and in turn quali�es, the prior
work. What the data scientist does when facing work is responsive and partially determined by
what has been going on up until now. The analytical reports are thus accounts `for reality', as they
provide a blueprint of the analysis taking shape.

While typically used for exploratory data analysis, the previously-mentioned notebooks provide
a hint at treating the data-science analysis as a document, in that these documents provide both
`models of' work done and `models for' work to be done. Documents in this way o�er a double
accountability: when documenting the analysis of a dataset, data scientists mold the account to
the reality of the code on their computers and at the same time, mold their ongoing coding to the
desires of the client.

Our focus on stigmergic coordination is how documents can serve as a model for work. With
this focus in mind, as shown in Figure 1, three further concepts from document studies stand out
as helpful in articulating how documents can serve as a model for work: genre, combinability, and
visibility and mobility. We address each of these in turn.

Fig. 1. Theoretical Model of Stigmergic Coordination

2.2 Genre and genre systems

A genre is de�ned as typi�ed action invoked in response to a recurrent situation [70]. People can
recognize a document as a model for possible action only because they have some background
knowledge about the genre of that document, and thus the expectations associated with that type of
communication [48]. For example, common document genres relating to an academic paper include
paper submission, reviews, editor's report, decision letter, reply to reviews, revision, acceptance
letter, �nal submission, galley proof, copyright release and published paper. Each has a characteristic
form (e.g., a review template) and purpose. People engage genres to accomplish social actions in
particular situations, which are characterized by a particular purpose, content, form, time, place
and set of participants.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 111. Publication date: November 2019.



111:6 Kevin Crowston, Je�rey S. Saltz, Amira Rezgui, Yatish Hegde, and Sangseok You

The same is true of FLOSS work products. A FLOSS developer engages in typi�ed actions invoked
in response to recurrent situations. They do so to accomplish a task characterized by a purpose,
material form, place, time and participants. By completing a piece of code for colleagues to work on,
a developer invokes a speci�c genre of work. Colleagues will be able to pick up and work with the
code (i.e., be able to coordinate their own work stigmergically) because it invokes that genre and so
comes with certain expectations. The �rst engineer might have created a sca�old of a module that
simply outlines a structure. In so doing, her work product becomes a model for work associated
with speci�c elements and course of action. It might invoke a sequence of steps or routes to a
conclusion. It might invoke certain categories or socio-material arrangements that must be used.
In this way, a piece of completed work serves as a model for future work by drawing on its own
genre, i.e., what are the expected outcomes, what materials and forms should be invoked at what
places and times and by what types of participants.

We expect to also �nd genres of work in data science, though perhaps not as well de�ned, given
the emerging nature of the �eld. By completing a piece of analysis (i.e., module or code segment
that cleans the data or does one speci�c analysis), a data scientist invokes a speci�c genre of work.
A colleague will be able to pick up and work with the analysis (module or code segment) if it
invokes a genre and so comes with certain expectations. For example, a data engineer might have
created a sca�old of a module that reads a dataset and does some basic cleaning. In so doing, this
work product might suggest future work associated with speci�c elements within the dataset.

A key point in the analysis of work in terms of genres is that for genres to enable documents to
function as models for work they must be part of the conventions of practice shared among members
of particular communities. Genres are not naturally occurring. They are rather learned as part of
membership of such communities: As new participants are socialized into the communities, they
gradually acquire a naturalized familiarity with the socio-material arrangements and prominent
genres.

Furthermore, documents related to work (and so we argue, the work itself) are often organized
into what are called genre systems [47], formalized sequences of documents of particular genres
providing more or less standardized methods for recognizing what might be done and what does
get done as legitimate work. We alluded above to the genre system around an academic paper:
submission, reviews, editor's report, decision letter, revision, acceptance letter, �nal submission,
galley proof, copyright release and published paper. FLOSS development has its own system, e.g.,
bug reports, patches, tests and releases.

Within a data-science context, a genre system can be viewed as a standardized �ow of work.
In fact, there are two di�erent potential work�ows. First, one can view the status of a module
(document) as a kind of genre. For example, within a Kanban project management context, one can
view a module as �owing from �to do� to �in progress� to �validate� and then �nally to �done� [2].
These phases can be seen as genres because the type of tasks that are appropriate or necessary for
a module changes as one moves, for example, from �in progress� to �validate�.

The second form of genre focuses on the nature of work done by the module. In the FLOSS
context, source code itself has a structure in which each component has more-or-less well-de�ned
purposes associated with speci�c functionalities. There are genres of source code: It collectively
has the purpose of providing instructions for the computer, but as well, each module of a program
has its own speci�c purpose and so its own subgenre. For example, some modules may manage the
interface, while others deal with interactions among data sources.

Moving to the data-science context, we expect to �nd a di�erent genre system. For instance, an
analysis might include steps to �rst clean the data, then do exploratory analysis, and then execute
several di�erent machine learning algorithms and compare the outputs. Thus, if we treat each task
as a code module, each code module provide genre expectations and thus serves as a `model for'

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 111. Publication date: November 2019.



Stigmergic Coordination with MIDST 111:7

work at two levels. First, the data-science process includes a number of distinct and typi�ed actions
involved in response to a recurrent situation and expressed in a set of characteristic documents,
including gaining access to data sources, code to clean the data, analysis code, and so on. These
genres are associated with particular purposes. For example, the purpose of the code cleaning is
to create a more usable dataset, whereas exploratory analysis is used to provide information to
data scientists about the data. Some code is used nearly exclusively by data scientists (e.g., data
cleaning), while other code, such as the data analysis, is often shared between clients and data
scientists, at least in terms of the results of the code. By looking at these work outputs, experienced
data scientists can determine which tasks might be appropriate to do next.

Furthermore, the code module itself has a structure in which each component has more-or-less
well-de�ned purposes associated with particular functionalities. For example, as previously noted,
some modules may clean data, while others focus on di�erent speci�c predictive analytics. For
modules to be useful, clarity of communicative purpose is of critical importance. In other words, it
should be clear which components are appropriate to modify or add to the analysis, for example,
where additional analyses could be added. Identi�cation of the purpose of a module can be promoted
via its interface: the inputs to the module, the module name/description and the outputs from the
module.

In a well-structured analysis, the clarity of subgenre, or module, is clear. In other words, the
subgenre (i.e., the purpose of a speci�c module) is recognizable and thus, the module is useable
by others as a model for work. This includes having well-de�ned inputs and outputs. In poorly a
structured program or analysis, the purpose of particular module may be hard to determine or, in
fact, muddled and unclear. This confusion may not directly a�ect the functionality of the code, but
in these cases, the module does not constitute a genre. Future data scientists cannot tell how to add
new functionality, such as an additional analysis, because the current work outcomes do not make
it clear how to add that new analysis without recreating the entire analysis.

2.3 Combinability

The second important characteristic of work documents for stigmergic coordination is combinability.
For the work to be a model for future work, the work must be combinable and improvable in modular
increments [38, 44]. Most work tasks are layered and complex: new work contributions can be
adjusted and added to existing outcomes. A piece of code might start out as an incomplete frame, a
sca�old on which other parts get added in some organized sequence. Later, new functionality can
be added to the existing structure.

Combinability is greatly enhanced by the modularity of the code. The modularity of a solution
can be considered as a continuum describing the degree to which the components of a solution
can be separated, worked on independently, and recombined [58]. Modularity is a familiar concept
in programming and has been cited as a key feature of FLOSS code. With respect to data science,
the use of R [1] is an example of one aspect of leveraging modularity to improve combinability.
Speci�cally, the Comprehensive R Archive Network (CRAN) contains thousands of �packages� that
can be installed and loaded as needed. These packages enable a team to easily combine modules
developed by others, such as using an advanced machine learning module via a function call.

However, another aspect of modularity, task modularity, is concerned with how a data-science
team breaks down its activities into modules (�chunks of work�) that can be worked on in parallel,
but in a coordinated manner. One important bene�t of task modularity is that it helps reduce the need
to coordinate details of a team member's work with other team members [6]. This combinability
(modularity) enables, for example, data cleaning functionality to be used by predictive analytic
modules, either in parallel with the development of data cleaning, or at some point in the future. In
this way, new work contributions can be adjusted and added to existing outcomes via the integration

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 111. Publication date: November 2019.



111:8 Kevin Crowston, Je�rey S. Saltz, Amira Rezgui, Yatish Hegde, and Sangseok You

of additional modules, or the enhancement of one or more modules. Furthermore, a piece of work,
such as data cleaning, might start out as an incomplete frame, a sca�old on which other parts get
added in some organized sequence. Later new functionality can be added to the existing structure.
In this way, an analysis evolves from version to version. Thus, it is not surprising that it has
been shown that leveraging modularity delivers signi�cant bene�ts within many contexts, such as
manufacturing [56] and, perhaps most commonly, software development [64].

We note that another bene�t of modules is that it supports complex problem-solving by enabling
a team member to focus on smaller challenges, rather than needing to focus on the entire problem [6,
13]. A modular approach enables the team to proceed more quickly and e�ectively [45]. Furthermore,
it has also been noted that modularity brings increased �exibility, a better ability to deal with
complexity and the accommodation of uncertainty [71]. Thus, one aspect of enabling a team to
work well together is by having the team be able to break the project into modular components [6].

Modularity is thus a key to combinability, leveraging a general set of design principles that
involves breaking up a problem into discrete chunks [43] and �building a complex product or
process from smaller subsystems that can be designed and worked on independently yet function
together as a whole� [5]. Hence, the use of modules and genres is likely to be important to data
scientists due to the bene�ts of decomposing tasks and allowing di�erent team members to work
on di�erent aspects of the project. In other words, enabling or improving modularity can provide
data scientists with an a�ordance that improves team coordination and e�ectiveness.

Combinability in FLOSS development is supported by both cultural norms and the source-code
control system infrastructure. First, there are strong cultural norms for providing �atomic commits,�
that is, developers are encouraged to address only one change or topic when making a commit,
leading to many small commits rather than occasional large ones [3]. It is easier to combine code
with a focused commit than with a commit that does multiple things and touches bits and pieces of
dozens of �les in the process. It is likewise easier to back out a focused commit if things should
go wrong. Developers are also warned: �Don't break the build�, which means that the main set
of �les in the source code control system should always compile and run. This practice ensures
that any developer who downloads the code will be able to work with it (i.e., it will be useful for
coordinating work), supporting the individual development described above. Combinability in
FLOSS development is further supported by the source-code control system infrastructure allowing
participants to merge work. For example, they can try out experimental enhancements on the code
in a branch before committing it, or work in parallel and then merge their e�orts (if their e�orts
have been modularly de�ned).

Implementing combinability for data scientists should similarly let them execute and test ideas
without interfering with others: they can run the code with their proposed changes and obtain
direct feedback about the combinability and thus success or failure of their changes. This approach
would allow them to iteratively enhance their understanding of the task and to modify their strategy
for managing dependencies between the existing analysis and what they are trying to accomplish.
Applied in a data-science setting, data scientists can interact with the code base as they would
engage in a conversation by continuously receiving feedback on their output. As a result, data
scientists can avoid a lot of communication with other team members, since their active engagement
with the artifact (the code) provides substantial insights; one has less need to ask another what
their intentions were when one can experiment with the code base.

2.4 Visibility and mobility

The third key feature of documents is their visibility and mobility. Obvious as it may seem, making
work visible to others is not a straightforward process. As discussed by Suchman [67], some work
may be more visible than other work; some work may cover up previous activity and render it

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 111. Publication date: November 2019.



Stigmergic Coordination with MIDST 111:9

invisible. For example, service work is notoriously hard to make visible: The better such work
is done, the less visible it is to those who bene�t from it. CSCW research on awareness and
transparency also addresses these concerns. Understanding what elements of work are accessible
and how its visibility may change over time is central to understanding how work may or may not
serve as a model for future work.

Further, for work to coordinate tasks beyond a physically-restricted space, it must become mobile
[44], meaning that it is accessible to others. By being in multiple places, code can coordinate work in
multiple settings. Most obviously, FLOSS development infrastructures support the mobility of work
by being internet-based. Any FLOSS developer can download the source code from the source-code
control system and have access to others' work as a basis on which they can build their own. As a
result, developers can, in many situations, use others' work as a model for their own work because
of their ubiquitous access to the server containing the code. We expect the technical a�ordance of
sharing �les to be easy to translate to a data-science setting, though the size of data �les may pose
a challenge.

Further, many systems provide a mechanism to push changes to other workspaces, rather than
having to wait for those others to seek them out. In addition, the source-code control system can
also record a revision history: all changes made to each module in the system including what was
created or deleted by whom, when. Many changes include short notes that can explain why a
change was made (although many changes do not, apparently expecting the reader to examine
the code directly). Such histories not only serve as `models of' work but can also point forward by
depicting the generally accepted work process. For a newcomer, such histories provide a window
to how things are done, what tasks tend to follow what tasks and what is regarded as good and
opposed to bad (i.e., reverted) work.

Visibility of FLOSS work is promoted as well through cultural norms about development. A
widely-acknowledged culture norm in open source is to �check in early, and check in often.� If
people do not share their work often, they are not making it visible to other participants to build
on. Large infrequent commits (�code bombs�) increase the chances that there will be con�icts and
make it harder for other developers to understand what a change does, again hampering visibility.
Indeed, a frequent complaint about a code contribution is that it is too large for developers to
easily understand. This cultural practice may be more di�cult to translate to data science, as data
scientists are not accustomed to thinking in modules. And simply sharing changes made to one
large analysis �le will not be e�ective if there are many dependencies among parts of the code,
making it di�cult to make atomic changes.

2.5 Hypotheses

As shown in Figure 2, we hypothesize that system (speci�cally, an enhanced interactive development
environment or IDE) that implements the a�ordances discussed above will enable stigmergic
coordination. Coordination can be measured by the team's overall perceived coordination, as well
as by a perception of workload fairness (i.e., good division of labor) and fewer reported team
output-related issues. Other indications of the e�ect of the system will be an increase in shared
understanding and an impression of support from the system. And because the system supports
stigmergic coordination, we hypothesize that the team will achieve these bene�ts while requiring
less explicit coordination e�ort.

3 SYSTEM DESIGN

Our goal in the project described in this paper is to support stigmergic coordination in data-science
teams by transferring �ndings about coordination to the setting of data-science teams. The previous
section laid out three sets of socio-technical a�ordances that we hypothesized would support

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 111. Publication date: November 2019.



111:10 Kevin Crowston, Je�rey S. Saltz, Amira Rezgui, Yatish Hegde, and Sangseok You

Fig. 2. Team Coordination Model

stigmergic coordination: genres, combinability and visibility and mobility. In this section, we
discuss how we designed and implemented a data-science team coordination tool to provide these
a�ordances, which we will use to test the hypotheses.

3.1 System Overview

MIDST (Modular Interactive Data Science Tool) is a web-based data-science application that was
developed for this project. The tool enables a team of data scientists to collaborate on developing
an analysis, which is implemented in the R system. MIDST has three integrated views that team
members use to create an analysis (or part of an analysis): the network, task and code views. Each
are described below.

3.1.1 Network View.The main view of the analysis is as a work�ow, in MIDST's network view. As
with other data-�ow tools, the network view helps users break an analysis into smaller chunks of
work (nodes), and then visualize the �ow of data through the nodes that comprise the analysis.
There are three kinds of nodes: executable nodes that contain R code (code modules), data nodes that
can be connected to an input of a node and visualization nodes that can be connected to an output.
For example, Figure 3 shows a simple analysis that reads in a raw data �le (theraw_data.csv
node), cleans and saves the data �le (theclean.R code node outputting to theclean_data.csv
data node) and generate a histogram (theOzoneHist.Rcode node reading from theclean.R node
and outputting to thehist.png visualization node).

In the network view, users can add new nodes, de�ne a node's inputs and outputs and connect
nodes together, implementing a �ow of data between the nodes. As users update the network (e.g.,
adding nodes or connections), the changes are propagated to other users viewing the network.
Users can execute the entire network in the network view by pressing the `Run' button at the top
of the network view window. Any errors that occur during execution of the network are visible as
failed nodes, shown by the exclamation mark in Figure 4. Other controls push or pull code changes
or change views (discussed below).

3.1.2 Task View.A second view of the node is a task view, shown in Figure 5. Similar to other task
boards, such as Trello (www.trello.com), the status of each code node is indicated by the column it
appears in. Users can update the status of a node by simply dragging it to a new column. Tasks
(i.e., nodes) can also be created in this view, which will add them to the work�ow, but without
connections. MIDST's task view provides a quick overview of the project status: what is being
worked on, who is working on it and the overall balance between completed and uncompleted

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 111. Publication date: November 2019.



Stigmergic Coordination with MIDST 111:11

Fig. 3. Network view showing data flowing between nodes

Fig. 4. Network view a�er execution showing nodes with errors

work. Status is also shown in the network view (Figure 3): each module is colored according to its
status.

Fig. 5. Task status view

3.1.3 Code View.Third, by clicking twice on a code node, within either the network or task view, a
user drills down to the R code for the node, with the node's input ports and output ports shown on
either side. (Clicking on a data or visualization node gives a preview.) An example is shown in Figure
6, which happens to be the R code for the clean module from Figure 3. An automatically-generated
R preamble reads the input ports and makes the data available to the user's R script as variables
with the same name; a postamble takes the contents of the named variables and adds them to the
output ports to transfer to other nodes. The author of the R code is responsible for making the
connection between these input and output variables.

Proc. ACM Hum.-Comput. Interact., Vol. 2, No. CSCW, Article 111. Publication date: November 2019.




	Abstract
	1 Introduction
	1.1 Stigmergic coordination
	1.2 Related CSCW concepts

	2 Literature Review
	2.1 Documents enabling coordination
	2.2 Genre and genre systems
	2.3 Combinability
	2.4 Visibility and mobility
	2.5 Hypotheses

	3 System Design
	3.1 System Overview
	3.2 Other design decisions
	3.3 MIDST's Support of Stigmergic Coordination
	3.4 System Implementation
	3.5 Comparison to other systems

	4 Preliminary Experience
	4.1 Methodology
	4.2 Usage Data
	4.3 Survey Analysis
	4.4 Survey Qualitative Feedback
	4.5 Finding from Observations

	5 Conclusion
	5.1 Limitations of the Study
	5.2 Future System Features

	Acknowledgments
	References
	Appendices
	A Scales

