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Abstract1 This paper furthers inquiry into the social structure of
free and open source software (FLOSS) teams by undertaking social
network analysis across time. Contrary to expectations, we confirmed
earlier findings of a wide distribution of centralizations even when
examining the networks over time. The paper also provides empir-
ical evidence that while change at the center of FLOSS projects is
relatively uncommon, participation across the project communities
is highly skewed, with many participants appearing for only one pe-
riod. Surprisingly, large project teams are not more likely to undergo
change at their centers. Keywords: Software Development, Human Fac-

tors, Dynamic social networks, FLOSS teams, bug fixing, communications,

longitudinal social network analysis

1 Introduction and Literature Review

Free/Libre Open Source Software (FLOSS2) is a broad term used to em-
brace software developed and released under an “open source” license allowing
inspection, modification and redistribution of the software’s source without
charge (“free as in beer”). Much though not all of this software is also “free
software,” meaning that derivative works must be made available under the
same unrestrictive license terms (“free as in speech”, thus “libre”). We study
1 Acknowledgement: This research was partially supported by NSF Grants 03–

41475, 04–14468 and 05–27457. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation

2 The free software movement and the open source movement are distinct and have
different philosophies but mostly common practices. In recognition of these two
communities, we use the acronym FLOSS, standing for Free/Libre and Open
Source Software.
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FLOSS teams because they are remarkable successful distributed work teams;
we are interested in understanding how these teams organize for success.

In this paper, we investigate the informal social structure of FLOSS de-
velopment teams by examining the pattern of communications between devel-
opers. We are seeking social patterns reflected in artifacts of project activity,
what de Souza et al call “an ‘archeology’ of software development processes”
[5]. In this paper, we analyze communication network data over time, us-
ing snapshot data, to understand better how social structures in projects are
changing over time. We first examine average centralization over time, then
we examine change at the center and finally the stability of participation in
project communications3.

White et al [15] introduced the modeling of social structure over time using
snapshot data. Our method is similar and their clear comment also applies,
we “present no models of processes over time; there are neither predictions of
other behavior nor explications of a stochastic process of tie formation and
dissolution” (p 732). Rather the analysis below seeks merely to describe the
structures as found at different points in time. Analysis of networks over time
with attention to causes and predictions from structure and its change, such
as preferential attachment, is an active area of research [11, 9] and one that
may be fruitful on this data.

Analysis of networks over time is also new to analysis of software develop-
ment communications. Recently de Souza et al [5] reported their examination
of FLOSS project communications for a small number of projects at two points
in time; they were able to see the movement of developers between the core
and the periphery of the project. The work presented below extends such
analysis to a large sample of data using automated analysis techniques.

Fig. 1. squirrelmail from [4] Modular, or changes at the center over time?

3 A longer version of this paper, that presents full summary statistics and time
series of network centralization over time, is available online at http://floss.

syr.edu/publications/
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Prior research has shown that FLOSS teams exhibit a wide range of cen-
tralizations, counter to both the common image of teams as totally decen-
tralized and the academic expectation of centralization [3, 4]. This work has
also shown that centralization scores are negatively correlated with number of
participants in the bug report discussions, specifically, that small projects can
be centralized or decentralized, but larger projects are decentralized. Figure
1 shows a large decentralized network.

Two explanations have been offered for this finding: first, the fact that in
a large project, it is simply not possible for a single individual to be involved
in fixing every bug. As projects grow, they have to become more modular,
with different people responsible for different modules. In other words, a large
project is in fact an aggregate of smaller projects, resulting in what might be
described as a “shallot-shaped” structure, with layers around multiple centers.

An alternative explanation is that the larger projects are more likely to
have experienced changes in leadership. This seems particularly credible when
one considers that participant counts are positively affected by project lifes-
pan. During any given period, the network may be centralized around a cur-
rent leader, but overlapping the networks from all periods gives a total network
with multiple centers and thus an artificially decentralized network.

Accordingly after comparing average centralization over time with the
overall centralizations reported in [4], we then examine changes at the cen-
ter of the communications networks. Stability at the center of a project is
likely important to the team’s performance. Linus Torvald’s position in the
Linux project is legendary and there is constant concern that he is being over-
stretched [10]. This concern is based, in part, on the knowledge that transition
is difficult; central personnel likely hold much tacit knowledge and stability
in structure ought to assist coordination through transactive memory.

Finally we examine the frequency of participation in project communica-
tions. The ability to attract and retain project participants is an important
measure of FLOSS project success, demonstrating the project’s viability as
well as its ability to satisfy its participants. Repeated involvement, or what
we might call tenure, should also serve as a knowledge and skill transmission
device. This is particularly important amongst the core team but is also im-
portant amongst the periphery of active users, who learn to provide “usable”
bug reports as well as how to run the latest development snapshots. Long-term
active users may step in as ‘newbie wranglers’ able to answer the frequency
asked questions and thus shielding the core developers, freeing up their time
and attention. We examine the frequency of participant’s involvement across
time and relate it to the patterns of difference in centralizations

2 Data and Method

For this analysis we utilized data collected from the SourceForge bug tracker.
The bug fixing process provides a “microcosm of coordination problems” [2]
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and is a collaborative task in which, as Eric Raymond [12] paraphrases Linus
Torvalds: the people finding bugs are different from those that understand the
bugs and those that fix the bugs.

We selected projects from SourceForge and downloaded project and bug
database data using Web spiders (see [8]). The projects selected were projects
that had had more than 100 bugs (open or closed) in the tracker at the
time of selection in April 2002 and which had more than seven developers
active overall in the discussions. This yielded data on 120 relatively successful
projects.

We extracted interaction data from the project bug reports to create inter-
action matrices. These were analyzed using social network analysis (SNA) [14].
The bug reports contain a thread of discussion (shown elsewhere in Figure 4
of [4]). The initial bug-reporter posts via a web interface, typically triggering a
message to a group of developers, or the development mailing list, depending
how the project is organized. Replies, often seeking more information or con-
firmation, are then posted to the bug, being copied to all previous recipients
and posted in the public forum.

SNA requires the construction of sociomatrices, depictions of social net-
works organized around dyads (pairs of senders and receivers). The appropri-
ate dyad in the case of an open forum is an interesting question in its own
right. While the origin of the message can be determined from the Sourceforge
ID, the message may well be received by all project participants (if the tracker
is copied to a mailing list), by all previous posters to the tracker, or merely
by the previous poster in the thread. This question is of great importance to
studies relying on the information flow characteristics of social networks.

For this reason, we simply coded the interaction as occurring between
the sender and the immediately previous poster and calculated outdegree
centralization. This was reasonable because our reading of the bug-reports
showed that most messages are a reaction to the immediately prior message
and because we are primarily interested in contribution, and not information
flows per se. Our dyad can be understood as ‘was prompted to speak in
public by,’ an interpretation which is robust with our interpretations below.
These ‘in-public’ dyads mean that it is conceptually difficult to utilize network
measures, such as betweenness centrality, which assume that only the recipient
has read the message, and that the recipient chooses whether to forward that
information onwards.

Outdegree centralization measures inequality in the proportion of the total
population spoken to by each node. A network in which a single individual has
spoken with all other participants, but where those others have only spoken
with that single individual would have very high outdegree centralization (1.0).
Conversely a network in which each participant has spoken with every other
participant would have very low outdegree centralization (0.0).

Each message has a time-stamp given when the message is received by the
tracker system. We used this data to divide the networks into over-lapping
snapshots. We sampled the network in 90-day windows, moving the window
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forward 30 days at a time. This means that a single dyad may be reflected in
up to three consecutive snapshots. We chose to use overlapping windows to
smooth changes in the network structure and 90 days was chosen so that the
majority of the projects contain enough communications to analyze in each
time period. The data and analysis scripts for this paper are available through
FLOSSmole [7].

3 Findings

3.1 Centralization

Our snapshot data provided an outdegree centralization figure for each project
in each frame. Thus we have a time series for project centralization. We hope
to explore such patterns in detail using time-series techniques to measure sta-
bility and trends across the data set, but at present we describe the series only
through their means and variance. The left-hand figure in Figure 2 shows the
distribution for the average outdegree centralization over time. Centralization
is distributed, with a mean of 0.59, and Median of 0.58 and a standard de-
viation of 0.15. The right-hand figure in Figure 2 attempts to measure the
stability of the centralization scores by examining the standard deviations of
the series. Given that centralization is normalized between 0 and 1, it is rea-
sonable to compare the standard deviations. The distribution shows that the
majority of centralization scores vary ± 0.2 through their lifetime.
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Fig. 2. Average Centralization over time is widely distributed, with moderate in-
ternal variance

If the hypothesis expressed in [4] was correct, and changes at the center had
artificially reduced the centralization score by collapsing time, the distribution
of average centralization ought to be higher overall than the distribution of
overall centralization. This was not the case. There was no statistical difference
between the distribution of average centralization presented in this paper and
overall centralization presented in [4].
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Fig. 3. The effects of collapsing networks over time

Figure 3 shows the differences between the average of our centralization
scores computed from the snapshots, and the centralization score obtained by
collapsing the network over time. The diagonal line shows equality, and the
perpendicular distance from that line shows the difference, either positive (the
collapsing of the network has produced an ‘artificially’ decentralized network)
or, somewhat unexpectedly, negative (where the collapsing of the network has
produced an ‘artificially’ centralized network). We can see that the projects
with positive and high differences appear to include some of the projects, such
as squirrelmail, that we anticipated might have undergone change at the
center, but the significant number of projects with low negative differences
renders the two distributions statistically similar.

To clarify, we considered two ideal cases of networks over time that would
produce such differences in overall and average centralizations. The first,
shown in Figure 4, depicts the network where change at the center in an other-
wise centralized network has lead to lower overall centralization. The second,
shown in Figure 5, introduces a new case, in which an otherwise decentralized
network is rendered centralized by collapsing over time due to a single par-
ticipant appearing in each frame, but with entirely different ‘partners’. Even
in a decentralized network the developer with high ‘tenure’ appears to form a
core, in regular discussion with a transient periphery.

In concrete terms these structures might indicate projects at different
stages of their lifecycle (as described in [13]). The first, centralized structure
might indicate projects on a growth trajectory driven by the creative vision of
their leaders in communication with a group of active alpha testers. The sec-
ond, decentralized structure might indicate a project in a maintenance mode,
being tended to by a few long-timers and a transient group of infrequent bug
reporters.
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Fig. 5. Ideal Type depicting inequality in tenure

3.2 Changes in central members

We can assess the occurrence of change at the center graphically by examining
individual centralities over time. In our data, individual outdegree centrality
is a measurement of the number of individuals that a participant has replied
to, standardized by the total number of participants (the potential audience).
For the projects with the highest positive difference between average and
overall centralization, we selected the five nodes with the highest average
centralization as candidates for being at the center. We then computed their
ranks in each time period and graphed them in Figure 6. When the line ascends
to the top (rank 1) it indicates that the node had the highest centralization,
on its own, in that period. (Ties were separated by assigning the minimum
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Fig. 6. Individual centrality ranks indicate change at the center

value for the tied group, so if all lines head down to rank ≤ 5 that indicates
that the ‘central’ position was shared during that period.)

curl is plotted first for comparison; it has not undergone change at the cen-
ter. Its central node, the solid line, has maintained the top rank in individual
centralities throughout the time period, shown by the horizontal line at rank
1. In contrast the four projects with highest differences show clear changes in
the developer in the most central position. cplusplus is the clearest of all, we
see that the developer represented by the solid line rapidly assumed the cen-
tral position in early 2000 and maintained that until May 2001. At that time
the developer represented by the single long dashed line emerged as a central
participant, first taking the second spot and then assuming the top position
until June 2002. Similar patterns are visible in other projects. squirrelmail
had a dominant center (dot-dashed) through until April 2001 It was not until
January 2002 that another relatively stable center, the solid line, emerged but
he was soon replaced by the developer represented by the dashed line who
was replaced in turn by the dotted line. The graphical analysis suggests that
change at the center is a good explanation for the reduction in centralization
that occurs when the networks are flattened across time.
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The snapshot data allows a numerical assessment of stability at the center
two ways for each project in our sample. First we counted the number of
developers ever at the top rank of individual centrality, and second we counted
the number of times the top rank position changed (we counted a change if
the top ranked developer at t + 1 was different than the developer at t). If
there are developers alternating in the center then the second figure will be
larger than the first. We expected to find that most projects were more similar
to curl than to squirrelmail, that the node at the center would be stable
through the project, quite possibly the project founder.
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Fig. 7. Change at the center is uncommon

Figure 7 shows the distributions for our two measures of center stability.
Among our sample the majority had only ever had one developer ever at the
center and seven was the largest count. Leadership changes showed a similar
distribution (the measures correlated at r = 0.73). This is an interesting
finding because it suggests that change at the center of a project is uncommon.

We expected that larger projects, with many more candidates for the cen-
ter and a greater ‘load’ on the central participants, would experience more
change at the center. However our measures did not show correlation with the
number of participants (0.18 and -0.02 respectively); larger projects do not
seem more likely to undergo more changes at the center.

The measures of change at the center did show correlation (r=0.4) with
the difference between average and overall centralization, lending quantitative
support to the graphical exploration of change at the center in Figure 6 and to
the hypothesis expressed in [4] at least for the cases with positive differences.
We now turn to examine the potential of transient peripheries suggested by 5
above.

3.3 Transient Peripheries?

As an heuristic to understand stability in participation, we measured the num-
ber of time windows in which each participant posted a message and expressed
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that as a percentage of the total number of snapshots of the project’s lifetime
in our data. Figure 8 shows the distribution of this measure for projects where
we had data on at least 10 periods. The data show a highly skewed distribu-
tion; the majority of participants are active for only between 10 and 20 percent
of the periods in which we had data. This reflects the fact that the mode was
activity for just a single period. On the other hand there are a number of
projects, like lyxbugs, ucsf-nomad and oscar, that had their participants
active in half of the periods examined, indicative of a fairly stable team.
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Fig. 8. Most participants are highly transitory

While this finding is interesting on its own and would bear further inves-
tigation, it showed low correlation with the differences between overall and
average centralization suggesting that the second ideal-type model is not that
common amongst our dataset.

4 Discussion

Our initial expectation that a dynamic snapshot analysis would revive our
expectation of a pattern of high centralization in FLOSS project communi-
cations was not supported. There was no significant difference between the
overall and average means and there were a large number of projects that had
the opposite reaction, where collapsing the network over time in fact raised
their centralization. We found reasonable evidence that changes in leadership
played a role in suppressing the expected centralizations but did not find a
full explanation for the negative cases.

Nonetheless, our analysis also provides possible insight into project lead-
ership and change. Outdegree centrality in our study is essentially measuring
contribution in the bug tracker. Contribution is crucial to leadership of FLOSS
projects, partially a result of its self-organization and volunteer nature and
partially as a result of its ideological commitment to meritocracy. It is tempt-
ing then to make a direct connection between high outdegree centrality and
thus a central position, and project leadership.
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Caution is called for, however, because this data is only measuring commu-
nications contribution, which is controversial as a measure of leadership com-
pared to development contribution. In fact Raymond expects FLOSS leaders
to ‘speak softly’ [12] and Alan Cox provides anecdotal reports of blow-hard
‘town councilors’ who speak a lot without writing code [1]. On the other hand
our data comes from the bug tracker, a place of focused activity, rather than
the project mailing lists where ‘town councilors’ are more likely to be found.
Sustained contribution in the bug tracker, answering questions and seeking
further information is likely to indicate a participant who is at least impor-
tant to the project, if not the over-all leader.

An expectation that figures central to a project would be found in the
bug tracker is in marked contrast to expectations in proprietary software
development teams. Here bug-fixing is likely to be ‘grunt work’; a leader in
proprietary teams is more likely to be found in an architecting and over-sight
role. Empirical work is needed to explore this difference further.

5 Conclusion

This analysis of FLOSS project communications over time has presented three
substantive findings:

• We confirmed the finding reported in [4]. Projects vary widely in their
social structures between projects even when the networks are analyzed
over time. Initial examination of centralization over time within projects
also shows substantial variance.

• We found that the majority of projects examined retain a single participant
at the center for substantial periods of time, and found that larger projects
do not change central participants more often than smaller projects. Per-
haps ‘Linus’ does scale after all (contra McVoy et al [10]), or, more likely,
lieutenants face a glass ceiling, collecting below and buffering a still active
central actor.

• We provide evidence that a vast majority of project participants are in-
volved for only a very small number of periods, and there is a characteristic
power law distribution whereby a very small number are involved for long
periods.

This paper, and the longer version available online, also makes a method-
ological contribution, describing a dynamic analysis of FLOSS project com-
munication and suggesting that collapsing a network over time is not a reliable
way to describe social structure as experienced by participants. Finally, the
paper also introduces a possible quantitative method for assessing leadership
change, a crucial event in virtual team dynamics. The individual centralization
rank graphs in Figure 6 identify time periods where qualitative investigation
of the project communications would be likely to reveal evidence of leader-
ship change. Thus a dynamic SNA approach can function as a data reduction
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device. We hope to extend this work by examining the time series, combining
it with an analysis of contribution in code repositories and exploring ‘con-
centration’ [6], a newly introduced SNA measure of centralization capable of
placing a group, rather than an individual at the center of a project
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