
Towards A Portfolio of FLOSS Project Success Measures

Kevin Crowston, Hala Annabi, James Howison and Chengetai Masango
Syracuse University School of Information Studies

{crowston, hpannabi, jhowison, cmasango}@syr.edu

Abstract

Project success is one of the most widely used de-
pendent variables in information systems research. How-
ever, conventional measures of project success are diffi-
cult to apply to Free/Libre Open Source Software
projects. In this paper, we present an analysis of four
measures of success applied to SourceForge projects:
number of members of the extended development commu-
nity, project activity, bug fixing time and number of
downloads. We argue that these four measures provide
different insights into the collaboration and control
mechanisms of the projects.

1. Introduction

We are interested in identifying factors that predict
distributed team performance, specifically, the perform-
ance of Free/Libre Open Source Software development
teams on FLOSS development. In this paper, we take a
first step in this direction by developing measures for the
success of FLOSS projects.

It is important to develop measures of success for
FLOSS projects for at least two reasons. First, having
such measures should be useful for FLOSS project man-
agers in assessing their projects. In some cases, FLOSS
projects are sponsored by third parties, so measures are
useful for sponsors to understand the return on their in-
vestment. Second, FLOSS is an increasingly visible and
copied mode of systems development. Millions of users
depend on FLOSS systems such as Linux (and the Inter-
net, which is heavily dependent on FLOSS tools), but as
Scacchi [1] notes, “little is known about how people in
these communities coordinate software development
across different settings, or about what software processes,
work practices, and organizational contexts are necessary
to their success”. A recent EU/NSF workshop on priori-
ties for FLOSS research identified the need both for learn-
ing “from open source modes of organization and produc-
tion that could perhaps be applied to other areas” and for
“a concerted effort on open source in itself, for itself” [2].
But to be able to learn from teams that are working well,
we need to have a definition of “working well”.

2. Measuring project success

Crowston, Annabi and Howison [3] examined the
process of FLOSS development to suggest measures in-
dicative of success for these projects. They noted that
conventional measures of project success [e.g., 4, 5] focus
primarily on use and the use environment of an informa-
tion system, but for FLOSS, the use environment is gen-
erally very difficult to observe, while by contrast the de-
velopment environment is quite visible. Furthermore,
conventional measures define success from the perspective
of corporate users who purchase the software, while
FLOSS projects depend on the continued motivation of
volunteer developers. Crowston, Annabi and Howison [3]
therefore suggested developing a portfolio of success
measures that includes measures of the development proc-
ess. While they suggested a number of possible measures,
they did not actually present data for any projects.

In this paper, we take the first steps towards imple-
menting a portfolio of success measures. Specifically, we
analyze four possible success measures, namely number of
members of the extended development community, pro-
ject activity, bug-fixing performance and number of
downloads. These measures were adopted from the list
presented by Crowston, Annabi and Howison [3] because
they span the development process, including inputs
(number of developers), process (project activity and bug
fixing) and output (number of downloads).

Our analysis aims at assessing the construct validity
of these measures. Each has good face validity, in the
sense that a project that attracts developers, maintains a
high level of activity, fixes bugs and that many users
download does seem like it deserves to be described as a
success. However, we are also interested in assessing how
these measures relate to one another: do they measure the
same construct or are they measuring different aspects of a
multidimensional success construct? And most impor-
tantly, what insight do they provide into the nature of the
development processes in the different projects?

In the following sections of the paper, we will dis-
cuss the procedure we used to obtain data with which to
operationalize the measures, followed by the details of the
analysis approach. We then present the results of this
analysis and discuss the implications of these results. We
conclude with some suggestions for future research.

3. Data

In this section we discuss the sample of projects se-
lected and the process we followed to gather data about
these projects.

3.1. Project selection

To create a sample of FLOSS projects, we selected
from projects hosted by SourceForge, a free Web-based
system that provides a range of tools to facilitate FLOSS
development (http://sourceforge.net/). At the time we
started our study, SourceForge supported more than
50,000 FLOSS projects on a wide diversity of topics (as
of 21 March 2004, the number was 78,003). Clearly not
all of these projects were suitable for our study: many are
inactive, previous studies have suggested that many are in
fact individual projects [6], and some do not make bug
reports available. Therefore, we restricted our study to
projects that listed more than 7 developers and had more
than 100 bugs in the project bug tracker at the time of
selection in April 2002. Being listed as a developer grants
write access to the project’s code base, so projects with
multiple developers are ones that might be expected to
experience significant coordination issues. Having bug
reports was a necessary prerequisite for the planned analy-
sis, as well as indicative of a certain level of development
effort. Quite surprisingly, we identified only 140 projects
that met both criteria. Unfortunately, space does not per-
mit a full listing of the projects, but the sample includes
the projects curl, fink, gaim, gimp-print, htdig, jedit,
lesstif, netatalk, phpmyadmin, openrpg, squirrelmail and
tcl. Those familiar with FLOSS may recognize some of
these projects, which span a wide range of topics and pro-
gramming languages.

3.2. Data Collection

Two of the measures we included (activity level and
number of downloads) are tracked by SourceForge and
thus available directly from the project description page.
As a measure of activity, we used the project activity
rank. To gather these data, we developed a spider to
download and parse the project pages. Data were collected
in April 2003.

To study the performance of bug fixing, we collected
data from the SourceForge bug tracking system, which
enables users to report, and developers to discuss bugs.
As shown in Figure 1, a bug report includes a description
of a bug that can be followed up with a trail of correspon-
dence. Basic data for each bug includes the date and time
it was reported, the reporter, priority and, for closed bugs,
the date and time it was closed. To collect this data, we
developed a spider program that downloaded and parsed
all bug report pages for the selected projects. Unfortu-
nately, between selection of projects and data collection,

some projects restricted access to bug reports, so we were
able to collect data for only 122 projects.

4. Analysis

In this section we discuss how we analyzed the data
to develop the four measures introduced above. The
analysis started with basis exploration of the data, which
revealed problems with the quality of the data for some of
the projects. For example, one team had consolidated bug
reports from another bug tracking system into the
SourceForge tracker. Unfortunately, these copied-over
bugs all appeared in SourceForge to have been opened and
closed within minutes, so this project was eliminated
from further analysis.

Fig. 1. Example bug report and
followup messages (adapted from

http://sourceforge.net/tracker/index.php?func=
detail&aid=206585&group_id=332&atid=100332)

4.1 Development team size

Since the FLOSS development process relies on con-
tributions from active users as well as core developers, we
sought a measure that reflected the size of this extended
team, rather than just the core developers listed on the
project page. As a proxy for the size of the extended de-
velopment community, we counted the number of indi-
viduals who posted a bug or message to the bug tracker.
As described above, the poster of bug reports and related
messages are identified by a SourceForge ID (though
postings can be anonymous), making it possible to count
the number of distinct IDs appearing for each project. The
counts were log transformed to correct skew.

4.2 Bug fixing time

To assess a project’s performance in bug fixing, we
examined how long it took the program to fix bugs by
calculating the lifespan of each bug from report to close
using the timestamps recorded by SourceForge. The most
straightforward analysis would be to calculate each pro-
ject’s average bug-fixing time. However, this approach
has several problems. First, the time taken to fix bugs is
highly skewed, making an average unrepresentative. Sec-
ond and more problematically, because not all bugs were
closed at the time of our study, we do not always know
the actual lifespan, but only a lower bound. This type of
data is described as censored. Bugs are assumed to be
reported at random times, making the censoring time (the
point of our data collection) independent of the bug
lifespan. As a result, the data exhibits “random type I
right-censoring” [7]. Finally, analyzing only the average
does not take into account available bug-level data. If
there are differences between projects in the types of bugs
reported (e.g., in their severity), then these differences
could affect the average lifespan for a project.

Analysis of censored lifespan data involves a statisti-
cal approach known as survival or event history analysis.
The basic idea is to calculate from the life spans the haz-
ard function, which is the instantaneous probability of a
bug being fixed at any point during its life. The hazard
function can then be used as a dependent variable in a
regression. Equivalently, the analysis can be done of the
survival rate, which is the percentage of the bugs still
open after a given lifespan.

In order to ensure that the hazard function is always
positive, it is typical to regress on the log of the hazard
function. Various functional forms can be assumed for the
hazard function vs. time: for example, in an analysis of
human death rates, the hazard function is generally as-
sumed to rise over time as the person ages, while for an
analysis of physical events, it might be assumed to be
constant. Factors that increase or decrease the hazard rate
can be added as additional variables in the regression.

For our initial purpose of developing a project-level
measure of bug fixing effectiveness, we simply entered

project as a factor in the hazard regression along with the
bug priority, allowing us to compute a hazard ratio for
each project (ratio because of the use of the log of the
hazard). The hazard ratios are the regression weights in the
hazard function for the dummy variable for each project,
using the first project as the baseline. The analysis was
performed using the R-Project statistical system
(http://www.r-project.org/), specifically the psm function
from the Survival and Design packages.

4.3 Activity level and number of downloads

The two remaining measures, activity level and num-
ber of downloads, were taken directly from SourceForge
and so did not require further analysis, other than a log
transformation of both to correct skew.

5. Results

In this section, we present the results of our analysis,
starting with descriptive data about each measure and then
considering relationships between measures.

5.1. Descriptive data

We obtained data on a total of 62,110 bug reports, an
average of 509 per project. The median number of reports
was 279, indicating a skewed distribution of bug report
counts. We counted a total of 14,922 unique IDs, of
whom 1,280 were involved in more than one project (one
was involved in 8 of the projects in our sample). Table 1
presents descriptive data for the four measures analyzed. A
plot of the survival rate over time for bugs is shown in
Figure 2. The plot shows that bugs with higher priorities
are generally fixed more quickly, as expected, but some
bugs remain unfixed even after years.

We experimented with different functional forms for
fitting the bug hazard rates. Somewhat surprisingly, the
form that fitted best was an exponential, that is, one in
which the hazard rate is not time varying. The R2 for the
fit was 0.51, which indicates a good fit. To assess the
validity of the computed hazard ratios as a measure of
bug-fixing performance, we compared the hazard ratios to
median bug lifespan for each project. The high correlation
between these values (r=0.88) suggests that the computed
hazard ratio does capture the performance of the project
team on fixing bugs. Of the two measures, the hazard
ratio seems preferable for further analysis because it takes
into account the open bugs and possible differences be-
tween projects in the mix of bug priorities experienced.

5.2 Relationships among success measures

Table 2 shows the correlations among the four meas-
ures proposed. The signs are all in the expected direc-
tions, since the community size and number of down-
loads should increase with success, while the activity rank

and hazard ratio decrease (rank 1 is most active). Four of
the six correlations are statistically significant (with 122
cases, the critical value for significance at p=0.05 is 0.17)
indicating that there is a genuine relationship amongst
them. The high correlations between activity rank, com-
munity size and number of downloads indicates that they
are measuring a common factor, while the hazard ratio
seems to be less connected.

6. Discussion

As mentioned in the introduction, the four measures
applied in this paper have face validity as indicators. The
preliminary analysis presented above allows us to extend
our examination of the validity and utility of the meas-
ures.

The high correlation among these measures indicates
a degree of convergent validity, since the different meas-
ures do correlate, particularly number of developers, activ-
ity and number of downloads. However, examining these
correlations and correlations with other variables in more
detail suggests room for improvement in the measures. In
retrospect, our use of the SourceForge activity measure is
problematic, since that activity is calculated using a for-
mula that includes the number of bug reports and down-
loads. The high correlation of activity and downloads can
thus be explained—they literally do measure the same
construct.

The hazard ratio, on the other hand, is less strongly
correlated, suggesting that it provides an independent
view of a project’s performance. This variable is most
highly correlated with the size of the development com-

munity, which makes sense: more developers means that
there is more help available to close bugs.

Another type of validity is predictive validity, mean-
ing that the measures predict other variables of interest.
The high correlations among variables are of little impor-
tance if those variables do not help us to understand the
projects. We found that our proposed measure of project
team size is highly correlated with the number of bug
reports (r=0.68). The correlation between the age of a pro-
ject and the number of bugs is low (r=0.09), suggesting
that it is not simply the case that older projects have more
time to collect reports and people. In other words, this
correlation does seem to reflect a real phenomenon: more
bug reports are indicative of a larger extended community.
Interestingly, there is a negative correlation between the
number of bugs and the time taken to fix them: projects
with more developers report more bugs and then fix those
bugs somewhat more quickly.

However, preliminary examination of the relationship
between these measures and other data raise a second con-
cern. In building a sample of projects to study, we seem
to have found projects that all seem to be successful, by
and large. As a result, the sample may not have sufficient
variance on success, meaning that correlations between
these success measures and other variables will be noise.
To address this concern, we should collect data on a
broader range of projects, including some that seem
clearly to be unsuccessful.

7. Conclusions

This paper makes a contribution to the developing
body of empirical research on FLOSS by identifying and

Figure 2. Plot of bug survival vs. time for
high, default and low priority bugs.

Mean MedianStdev
Community size 138.4 87.5 206
Activity rank 620 423 586
Hazard ratio 1.009 0.9438 1.06
Downloads 246,294 36,493817,874

Table 1. Descriptive data for the four meas-
ures.

C S A R HR D
Community size 1.00-0.73 -0.27 0.48
Activity rank -0.73 1.00 0.14 -0.70
Hazard ratio -0.27 0.14 1.00 0.06
Downloads 0.48-0.70 0.06 1.00

Table 2. Correlations among measures.

operationalizing four success measures that might be ap-
plied to FLOSS. We have collected data on these meas-
ures for a set of SourceForge projects and shown the rela-
tions among these measures. We emphasize again that we
do not view any single measure as the final word on suc-
cess. As the measures draw on different aspects of the
development process, they offer different perspectives on
the process. Including multiple measures in a portfolio
should provide a better assessment of the effectiveness of
each project.

Having identified particular effective projects, our fu-
ture work includes more detailed analysis of the projects.
We plan to employ a theoretical sampling strategy to
choose a few FLOSS development teams to study in
depth. By limiting the number of projects, we will be
able to use more labour-intensive data analysis approaches
to shed more light on the practices of effect FLOSS
teams.

8. References

[1] W. Scacchi, "Software Development Practices in Open
Software Development Communities: A Comparative Case
Study (Position Paper)," 2002.
[2] R. A. Ghosh, "Free/Libre and Open Source Software: Sur-
vey and Study. Report of the FLOSS Workshop on Advanc-
ing the Research Agenda on Free / Open Source Software,"
European Commission, http://www.infonomics.nl/FLOSS
/report/workshopreport.htm, 2002.
[3] K. Crowston, H. Annabi, and J. Howison, "Defining Open
Source Software project success," in Proceedings of the 24th
International Conference on Information Systems (ICIS
2003). Seattle, WA, 2003.
[4] W. H. DeLone and E. R. McLean, "The DeLone and
McLean model of information systems success: a ten-year
update," J. Manage. Inform. Syst., vol. 19, pp. 9-30, 2003.
[5] W. H. DeLone and E. R. McLean, "Information Systems
Success: The Quest for the Dependent Variable," Information
Systems Research, vol. 3, pp. 60–95, 1992.
[6] S. Krishnamurthy, "Cave or Community? An Empirical
Examination of 100 Mature Open Source Projects," Univer-
sity of Washington, Bothell, Bothell, WA May 2002.
[7] F. E. Harrell, Regression modeling strategies: With ap-
plications to linear models, logistic regression, and survival
analysis. New York: Springer, 2001.

