
A structurational perspective on leadership
in Free/Libre Open Source Software teams

Kevin Crowston*, Robert Heckman*, Hala Annabi+ and Chengetai Masango*

* Syracuse University, School of Information Studies + University of Washington, The Information School
Syracuse, NY, USA Seattle, WA, USA

{crowston, rheckman, cmasango}@syr.edu hpannabi@u.washington.edu

Abstract – In this conceptual paper, we present a structura-

tion-based theory of leadership behaviours in self-organizing
distributed teams such as Free/Libre Open Source Software
development teams. Such teams are often composed of mem-
bers of relatively equal status or who are so disparate in
background that formal organizational status seems irrele-
vant, reducing the usual leadership cues provided by organi-
zational status and title. Building on a functional view of
leadership and structuration theory, we suggest that leaders
are individuals who develop team structures that then guide
the actions of team members. Specifically, we examine struc-
tures of signification in the form of shared mental models,
structures of domination in the form of role structures and
structures of legitimation in form of rules and norms. The
main contribution of our paper is the integration of various
social theories to describe emergent leadership behaviours in
distributed teams. We develop a set of propositions and illus-
trate with examples taken from Free/Libre Open Source
Software development teams. We conclude by suggesting
practical implications as well as future research that might be
conducted to test and further elaborate our theory.

I. INTRODUCTION

In this paper, we develop a theory of leadership behav-
iours in self-organizing distributed teams such as the core
team of developers in Free/Libre Open Source Software
development projects. FLOSS1 development is an extreme
example of self-organized distributed work and thus poses
particular challenges for the development of leadership.
Developers contribute from around the world, meet face-
to-face infrequently (or not at all), and coordinate their
activity primarily by means of information and communi-
cations technologies (ICT) [2, 3]. Projects often do not
have appointed leaders [4]. As well, many (though by no
means all) programmers contribute to projects as volun-
teers, without being paid or even working for a common
organization, again minimizing the effectiveness of tradi-
tional organization and leadership. For example, in a team
of volunteers, it is usually not possible for team leaders, if
they exist, to formally assign a task to a particular individ-
ual and then monitor performance; rather they often must
wait until an interested individual chooses to perform it.
This heavy reliance on self-organization sets FLOSS pro-
jects apart from most other distributed teams and has par-
ticular implications for the development of leadership in
these teams.

While distributed work has many potential benefits, dis-
tributed workers face many real challenges. Watson-
Manheim, Chudoba, & Crowston [5] argue that distributed
work is characterized by numerous discontinuities: a lack

 1 FLOSS is a broad term used to embrace software developed
and released under an “open source” license allowing inspec-
tion, modification and redistribution of the software’s source
without charge (“free as in beer”). Much though not all of this
software is also “free software”, meaning that derivative works
must be made available under the same unrestrictive license
terms (“free as in speech”, thus “libre”). In our writing, we use
the acronym FLOSS rather than the more common OSS to
emphasize this dual meaning.

of coherence in some aspects of the work setting (e.g.,
organizational membership, business function, task, lan-
guage or culture) that hinders members in making sense of
the task and of communications from others [6], or that
produces unintended information filtering [7] or misunder-
standings [8]. These interpretative difficulties in turn make
it hard for team members to develop shared mental models
of the developing project [9, 10]. A lack of common
knowledge about the status, authority and competencies of
participants can be an obstacle to the development of
norms [11] and conventions [12]. The separation between
members may ultimately result in a failure of the team to
be effective [13-16].

Distributed teams face particular problems with leader-
ship. Though leadership is one of the most studied topics in
organizational and management research, relatively little
research has been conducted on the nature of leadership in
self-organizing distributed teams [17-19]. Such teams are
often composed of members of relatively equal status or
who are so disparate in background that formal organiza-
tional status seems irrelevant, reducing the usual leadership
cues provided by organizational status and title. Such
teams often have no appointed leader, and their members
may or may not have significant prior experience working
with one another. In such cases, rather than being ap-
pointed or even elected, a leader or leaders may emerge
gradually, and such emergent leadership may be com-
pletely unrelated to organizational position or status. As
work teams become more distributed, these traits may
become more pronounced. The most effective types of
leadership behaviour in these new organizational forms
may be very different than the behaviours appropriate to
the centralized, hierarchical, single-leader paradigm.

In this conceptual paper, we build on a functional view
of leadership and structuration theory to develop a theory
of leadership behaviours in one particular type of distrib-
uted team, FLOSS project teams. The main contribution of
our paper is the integration of various social theories to
develop theoretical propositions about emergent leadership
behaviours in self-organizing distributed teams. Our paper
thus provides direction for future research by suggesting
what concepts and relationships to study and what kinds of
data to collect. In the following section, we introduce our
theoretical bases and develop a set of propositions. We
conclude by describing directions for future research to test
or further refine our theory.

II. A STRUCTURATIONAL PERSPECTIVE ON
LEADERSHIP IN DISTRIBUTED TEAMS

In the two sections that follow, we briefly describe the
two theoretical lenses that inform our analysis of leader-
ship behaviours in self-organizing distributed teams. First
we describe a functional view of leadership that we believe
best suited to describe the form of emergent leadership in
self-organizing distributed teams. Next we present our
rationale for adopting a structuration perspective to con-
ceptualize leadership in these teams.

A. A functional view of leadership

We have noted that leadership in self-organizing distrib-
uted teams is often emergent rather than appointed. To
understand the processes of emergent leadership, we adopt
a functional approach to leadership. In this approach, some
behaviours serve as leadership functions in that they help
the team to achieve its goals and perform effectively.
Through the interactions of the team members, one or more
individuals emerge to perform the leadership behaviours
that the team requires. More than one individual may per-
form leadership behaviours, and different individuals may
perform the same leadership behaviours at different times
[20]. A functional approach to leadership is better suited to
the study of emergent leadership behaviours in teams with-
out a priori leadership status or assignments.

Research has distinguished several different types of
leadership behaviours. Most functionalist theories make a
broad distinction between task leadership behaviours and
team maintenance leadership behaviours. The former are
concerned with organizing, coordinating and performing
the task(s) that constitute the team’s primary work, while
the latter are concerned with maintaining team morale,
motivation and communication. Bales [21] believed that
the functions of task and maintenance behaviours are op-
posed, and that teams should strive to find a balance or
equilibrium between them. The opposition between task
and maintenance behaviours also suggested to Bales that it
would be more likely that different people would emerge
to perform task and maintenance roles [20]. In addition to
the task and team maintenance functions which leadership
must satisfy, Ancona and Caldwell [22] argued that there
are also leadership functions involved with maintaining
relations with individuals and teams outside the team.
Effective emergent leaders may be those who are able to
attend to both the relational (social) and task-related needs
of the team, adapting to the situation and manifesting the
requisite behaviours as required [15, 23-26].

More specific to leadership roles, the functional ap-
proach to leadership suggest that more than one individual
may perform leadership behaviours, and different indi-
viduals may perform the same leadership behaviours at
different times [20]. Hackman and Walton [27] argue that
these functions have a critical role in facilitating team
performance.

B. Structuration theory

To conceptualize the way that individuals’ actions can
serve to provide leadership in FLOSS development teams,
we adopt a structurational perspective. Structuration theory
[28] is a broad sociological theory that seeks to unite action
and structure. Numerous authors have used a structura-
tional perspective to frame empirical analyses of team
activities [e.g., 29, 30-33] and in particular, the develop-
ment of virtual teams [e.g., 34]. We chose this framework
because it provides a dynamic view of the relations be-
tween team structures and the actions of those that live
within, and help to create and sustain, these structures and
guides the development of theory. In particular, it provides
a framework for analyzing how the actions of one member
(a team leader) might shape the actions of others, even in
the absence of traditional modes of authority.

Structuration theory might be described as a meta-
theory: that is, rather than specifically describing the rela-
tions between specific factors of leadership, structuration
theory describes the form that that theory should take.
Specifically, structuration theory is premised on the duality
of structures: it suggests that a theory of leadership in dis-
tributed teams should consider the structures and actions in
these teams and how the two are interrelated. By structure,
we mean the rules and resources that influence, guide or

justify individual action. These structures are “encoded in
actors’ stocks of practical knowledge” [1] and “instantiated
in recurrent social practice” [35]. We specifically consider
three kinds of rules and resources [1, 36]:
1. interpretive schemes that create structures of significa-

tion,
2. authoritative and allocative resources that create struc-

tures of domination, and
3. norms that create structures of legitimation.

For example, a particular process for testing software
modules (an individual action) may be followed by indi-
vidual developers because that process is the accepted
norm within the team (i.e., because of a structure of legiti-
mation). It should be noted that these structures are not
viewed as existing some how separately from team mem-
bers. Rather the actors and their practices compose the
structure, in the much the same way that dancers compose
a ballet or football players compose a game [37].

By the “duality of structure”, we mean these structural
properties of a social system are both the means and the
ends of the practices that constitute the social system. As
Sarason [38] explains, in structuration theory:

“The central idea is that human actors or agents are both en-
abled and constrained by structures, yet these structures are
the result of previous actions by agents. Structural proper-
ties of a social system consist of the rules and resources that
human agents use in their everyday interaction. These rules
and resources mediate human action, while at the same time
they are reaffirmed through being used by human actors or
agents.” (p. 48).

Simply put, by doing things, we create the way to do
things. For example, the norm of using a particular testing
strategy is not a given, but rather itself the outcome of prior
actions by developers. By following the norm, developers
reinforce its legitimacy (“we always do it this way”); by
taking different actions (e.g., skipping testing because it is
seen to be too time-consuming or using a different ap-
proach because the accepted approach seems unable to
identify important problems), they undermine its legiti-
macy, perhaps eventually changing the norm.

By relating structure and action across time, structura-
tion theory provides a framework for understanding the
dynamics of a team [39] and the relations between actions.
Barley and Tolbert [1] note that structuration is “a continu-
ous process whose operations can be observed only
through time” (p. 100). Cassell [40] says, “to study the
structuration of a social system is to study the ways in
which that system, via the application of generative rules
and resources, in the context of unintended outcomes, is
produced and reproduced through interaction” (p. 119).
Figure 1, adapted from Barley and Tolbert [1] shows the
relation between institution (which the authors use syn-
onymously with structure) and action, and how both evolve
over time. In this figure, the two bold horizontal lines rep-
resent “the temporal extensions of Giddens’ two realms of
social structure: institutions and action,” while the “vertical
arrows represent institutional constraints on action” and the
diagonal arrows, “maintenance or modification of the insti-

Fig. 1. A sequential model of the relation between structure

and action (from [1], p. 101).

tution through action” (p.100). For example, the influence
of a team norm on a developer to use a particular testing
strategy is represented by a downwards vertical arrow,
while reinforcement or changes to the norm due to actions
is represented by an upwards diagonal arrow.

While it might first appear that a consideration of lead-
ership would be relevant primarily to an understanding of
the structures of domination, we expect leadership in self-
organizing teams to be expressed through all three systems
of structuration: signification, domination and legitimation.
When viewed through the combined lenses of functional
leadership theory and structuration theory, we argue that
among the functions that are most essential to effective
functioning of a team is the development of helpful struc-
tures that guide the actions of team members. In other
words, we conceptualize leadership in self-organizing
distributed teams in terms of developing structures—
reinforcing existing structures or creating new ones—
rather than simply control of resources. This view is one
that can account for the patterns of fluid and emergent
leadership found in self-organizing distributed teams.

III. THEORY DEVELOPMENT: LEADERSHIP
IN SELF-ORGANIZING DISTRIBUTED TEAMS

In the following three sections, we discuss each of the
three systems of structure, developing propositions con-
cerning the way structure guides effective team action (the
downward vertical arrows in Figure 1) and the way team
member actions generate structure (the upwards diagonal
arrows) and describe leadership behaviours in these terms.
To develop these propositions, we build on additional
theories, which we introduce in each section.

Although the contribution of our paper is conceptual
rather than empirical, to make the theory more concrete,
we illustrate the generation and effects of structures with
examples drawn from FLOSS development in two pro-
jects: the APACHE HTTPD project and the PLONE project.
APACHE HTTPD (http://httpd.apache.org/) is the most com-
monly deployed Web server. PLONE (http://www.plone
.org/) is a Web-based content management system. Both
projects have been successful in harnessing the efforts of
numerous developers from around the world to develop
and distribute software. The examples are drawn from
email or IRC (Internet Relay Chat) transcripts of developer
interactions that are currently being analyzed in the empiri-
cal portion of our project. (Detailed description of our data
collection approach would be inappropriate for this paper
because our argument here is primarily conceptual, build-
ing on prior theory, rather than empirical, building on
current data. The examples are offered as illustrations
rather than proof of our theory.)

A. Interpretive schemes and structures of signification

Individual actors’ interpretive schemes create structures
of signification. To describe how interpretive schemes
influence collective team action and vice versa, we draw
on theories of the role of shared mental models in team
action. Shared mental models, as defined by Cannon-
Bowers et al. [41],

are knowledge structures held by members of a team that
enable them to form accurate explanations and expectations
for the task, and in turn, to coordinate their actions and
adapt their behaviour to demands of the task and other team
members” (p. 228).

The issue then is not so much whether developers have
interpretive schemas, but rather the degree of similarity
and sharing among the schemas of different developers.

Shared mental models are clearly important for team ef-
fectiveness. In a study of supply chains (another distributed

work environment), Hult, Ketchen and Slater [42] found
the level of shared meanings to be related to improved
overall performance (specifically, reduced cycle time). On
the other hand, without shared mental models, individuals
from different teams or backgrounds may interpret tasks
differently based on their backgrounds, making collabora-
tion and communication difficult [43]. The tendency for
individuals to interpret tasks according to their own per-
spectives and predefined routines is exacerbated when
working in a distributed environment, with its more varied
individual settings and less opportunity for informal dis-
cussion.

Research on software development in particular has
identified the importance of shared mental models in the
area of distributed software development [44]. Curtis et al.
[9], note that, “a fundamental problem in building large
systems is the development of a common understanding of
the requirements and design across the project team.” They
go on to say that, “the transcripts of team meetings reveal
the large amounts of time designers spend trying to de-
velop a shared model of the design”. In short, shared men-
tal models are important as guides to effective individual
contributions to, and coordination of the software devel-
opment process.

In emphasizing the duality of structure, the structura-
tional perspective draws our attention to how shared men-
tal models are products of, as well as guides to, action.
Walton and Hackman [45] identify an interpretive function
of teams, which is to help members create a consistent
social reality by developing shared mental models. The
problem of developing shared mental models is likely to
particularly affect FLOSS development, since FLOSS
project members are distributed, have diverse backgrounds,
and join in different phases of the software development
process. To identify specific actions that can help to build
shared mental models, we draw on the work of Brown and
Duguid [46], who identify the importance of socialization,
conversation and narration in building shared mental mod-
els.

First, new members joining a team need to be socialized
into the team to understand how their work fits into the
processes being performed or the existing code structure.
An example drawn from the early stage of team develop-
ment the APACHE HTTPD project illustrates the function of
socialization. In this example a more senior member of the
team explicitly addresses new members of the team in
explaining why the code functions in a particular way
(quotations from developers email or IRC chats are pre-
sented in typewriter font).

For new members to the list, child processes
would send lines such as these to the logging proc-
ess with a child number attached. The child num
would be used by the logging process to determine
which pieces of info need to be teamed. When the
logging process receives say the ETIME, it knows
it is safe to log request.
Second, conversation is critical in developing shared

mental models. It is difficult to build shared mental models
if people do not talk to one another and use common lan-
guage [47]. Meetings, social events, hallway conversations
and electronic mail or conferencing are all ways in which
team members can get in touch with what others are doing
and thinking. Yoo and Alavi [18] found that leaders sent
more messages than other team members. However, these
kinds of conversations are less likely to occur spontane-
ously in highly distributed groups. Another example from
APACHE HTTPD illustrates a conversation between a newer
member and a more expert member to clarify actions and
meaning of terms. The conversation between the two
members and others in that particular instance leads to
shared understanding of the meaning of terms and a deeper
understanding of the code and the process.

Newer member:
I think I’m missing something. What does that
comment mean in this context? Doesn’t static
only define these variables to be “global” in this
file? I don’t understand how this relates to refor-
matting speed, whatever that is.

Expert member:
Yes, that’s what it means in this context. What it
means is that I didn’t want to make them globals,
but decided it wasn’t so bad to do that. The refor-
matting speed is when you use #config timefmt to
change the string version of those variables, with
these globals it doesn’t have to call time(NULL)
again or stat().
Finally, Brown and Duguid [46] stress the importance of

narration. To keep shared mental models strong and viable,
important events must be replayed, reanalyzed, and shared
with newcomers. The history that defines who we are and
how we do things around here must be continually rein-
forced, reinterpreted, and updated. A third example drawn
from APACHE HTTPD, illustrates the function of narration.
During this early stage in the team development, members
of the Apache project were discussing their goals in terms
of the product and process. In discussion of what members
should include when modifications to the product were
made, a member used a war story to illustrate a point:

 “So long as you remembered to put in the #ifdef.
Sometimes, people forget. With RCS, this is not a
problem. (A minor war story may be instructive, if
only to let people know where I’m coming from. In
the ai_httpd sources I’ve put up on ftp.ai.mit.edu,
the nameserver cache is an option, so the code can
be compiled at sites which don’t do mmap(). My
first cut at doing this left out an #ifdef around a
line of modified code (the call to
write_nameserver _cache in get_remote_host),
meaning that while my modified server tested just
fine, the base configuration could not be compiled
after the patch. I fixed that, but this sort of human
error is likely to happen again, and probably not
just to me.)”
Based on the discussion above, we offer the following

propositions. The two parts of proposition 1 correspond to
the two links between structure and action shown in Figure
1: part a corresponds to the downward arrow showing the
effect of structure on developers’ actions, and part b, to the
upward sloping arrow, showing the effect of developers’
actions on structures.
Proposition 1a: Highly developed shared mental models
enable more effective contributions by FLOSS developers.
Proposition 1b: Teams with practices that involve higher
levels of socialization, conversation and narration will
develop more highly developed shared mental models.

In a distributed team where members make diverse
knowledge contributions [48], leaders may exercise their
influence by means of their substantive expertise as well as
through their coordinating and directing activities. An
important leadership function may be supporting the de-
velopment of shared mental models (consciously or uncon-
sciously) by leading in the socialization of other team
members through conversation and narration. A couple of
examples from APACHE HTTPD illustrates that members
who engage in building shared mental models of the code
structure or coordinate tasks are often recognized as the
experts in those areas. This recognition is shown in these
quotations in the way that other members of the group
often refer to specific team members for final decisions or
to seek feedback specifically on the matter.
Example product leadership:

Also, this would be greatly enhanced if instead of
issuing a Redirect the server could respond

“here’s the jpg file, but you (the client) should be
aware the URL this is really known as is
http://host/path/mother.jpg“. I didn’t see any
codes that matched that - Roy?

Example process leadership:
Inactivity isn’t healthy, so let’s get something up
and running, I belive that rst is in a position to
give us a list of patches which are urgent. If there
are no objections, lets have a look at this priori-
tised list, setup some pointers to the patches
themselves, and try them out. One we get the ur-
gent fixes out of the way, we can get back to the
wish-list.
We therefore offer the following proposition linking

structure, action and leadership:
Proposition 2: Team members who are more involved in
socialization, conversation and narration will be recog-
nized as leaders by other team members.

B. Resources and structures of domination

Second, the control of resources is the basis for power
and thus for structures of domination. Resources include
both allocative resources (control over things) and authori-
tative resources (control over people). For software devel-
opment, these resources would seem to be less relevant:
since the work is intellectual rather than physical and de-
velopment tools are readily available, few “things” in short
supply. Furthermore, most FLOSS projects are composed
of volunteers and have a stated ethos of open contribution
and lack of formal hierarchy, making control over people
indirect at best. Nevertheless, developers do face important
differences in access to expertise and in control of system
source code (the primary resource) and documentation (a
secondary resource), so structures of domination are still
important. Structures of domination are inscribed in roles
within project having differential access to code and
documents. Researchers have described FLOSS projects as
having a hierarchical or onion-like structure [49-52], with
core developers contributing most of the code and oversee-
ing the design and evolution of the project, with contribu-
tions from co-developers or active users. Core developers
are distinguished by having write privileges on the source
code. Research suggests that teams need members in all
these roles to be successful [52].

Roles emerge from activities such as task division. The
overall task of developing the system is divided into pieces
suitable for different kinds of participants. An example
drawn from the PLONE project, shows one member describ-
ing a division of labor in the production of documentation
that involves several levels of contribution.

> The normal flow is:
> 1. Author adds documentation
> 2. Reviewer publishes documentation
> 3. User reads documentation, has
> question/correction, adds comment
> 4. Author gets email
> 5. Author reads comment, corrects his article,
> removes the comment
> (and if we had events, we could send a “thank
> you” mail here ;) (also note that author can edit
> his content in-place after initial publication, no
> need for another workflow process.)
> 6. The flow starts at (3) again.
Based on the discussion above, we offer the following

propositions:
Proposition 3a: Clearly defined role structures with par-
ticipants in all roles enable more effective contributions by
FLOSS developers.

Proposition 3b: Teams in which role definition functions
such as task division are regularly performed will develop
more clearly defined role structures.

In the early stages of APACHE HTTPD, there was not a
clear identification of roles. However, the emergent behav-
ior of members in how they contribute and facilitate to the
development of the product or the process led to fellow
members deferring to them in their matter of expertise. In
example 1, members call on the “code experts” for feed-
back. In example 2, a member calls on one of the “process
leaders.”
Example 1 (product):

So my question is, could set_content_type_and_
parms() be removed as well? Or is the NULL de-
fault content type important somewhere? RST
[expert’s initials]?

Example 2 (process):
RST - How do you want to distribute this? Shall I
send it to you? Perhaps we need to start a module
repository?

Proposition 4: Team members who perform role definition
functions such as task division will be recognized as lead-
ers by fellow team members.

C. Rules and norms and structures of legitimation

Finally, actors’ social norms and team rules embody
structures of legitimation. The regulative function of
teams, as presented by Walton and Hackman [45], de-
scribes one aspect of team functions as the creation of
rules, implicit and explicit. As the team attempts to achieve
its task, team interactions lead to the development of im-
plicit and explicit rules for social or interpersonal interac-
tion to guide team member behaviour in achieving its goals
and functions. The creation and implementation of rules is
a key competency for any team or organization [53]. A
team or organization’s ability to creatively create rules that
are consistent with members’ actions and represent organi-
zational mission, values and process is critical to its effec-
tiveness [53, 54]. For example, Fielding [4] describes the
creation of decision making rules in the APACHE HTTPD
project.

These developments are the result of integrating the
knowledge of experts, through problem solving, political
negotiation, and experiential learning [53], into the team’s
structure reflecting potential behavioural changes within a
team over time, what March et al. [53] and Hayes and
Allinson [55] refer to as learning on the team level. They
also reflect what we have labeled procedural task leader-
ship at work. Grant [48] similarly suggests that a firm (or
team) creates coordination mechanisms, in the form of
procedures and norms, to economize on communication,
knowledge transfer and learning, thus reserving team deci-
sion making and problem solving for complex and unusual
tasks.
Proposition 5a: Clearer and more elaborate rules and
norms enable more effective contributions by FLOSS
developers.
Proposition 5b: Teams with practices that involve high
levels of collaborative, interactive problem solving, politi-
cal negotiation, and experiential learning will develop
clearer and more elaborate rules and norms.

Since development of structures is an important leader-
ship function, team members who initiate the processes
that result in the development of implicit or explicit rules
are those most likely to be perceived as leaders by other
members [56, 57]. As well, Barley and Tolbert [1] note
that socialization frequently “involves an individual inter-

nalizing rules and interpretations of behaviour appropriate
for particular settings” (p. 100). New members need to be
encouraged and educated to interact with one another to
develop a strong sense of “how we do things around here”
(e.g., norms).

The following example shows the development of a set
of explicit rules for the construction of documentation for
the PLONE project. Note as well that the individual devel-
oping these rules explicit calls for them to be promulgated
by a core developer to give them legitimacy, another ex-
ample of recognition of leadership being tied to creation of
structures.

> I assume that we will be pushing a lot of
> documentation in the next few weeks.
> I think it would be very helpful if documentation
> reviewers had a set of guidelines to follow for
> what to accept as-is, what to edit and publish,
> and what to reject. Things like
>
> o Short name format
> o Descriptions
> o Style/formatting of body text
> o Version information
> o Formatting
> o Section organization
> o Comments (when to add, when to remove)
>
> Perhaps the best thing would be to produce a
> checklist against which submitters and
> reviewers could gauge a piece of documentation.
> Hopefully, this should remove some ambiguity
> and resolve any disputes on what gets edited and
> what gets accepted.
>
> I think it’s important to do this sooner rather
> than later, as we want to establish PHC as a
> bonafide resource right from the outset. It
> doesn’t have to be long or overly detailed, but it
> does have to be somewhat authoritative, which
> means that Alex or someone else core should
> produce the initial draft.
A second example shows a project leader in the PLONE

project enforcing a norm by evicting from an IRC discus-
sion channel an individual, RATATOSK, who persistently
violated the norms for interactions in the project.

[16:40] * Ratatosk () has joined #plone
[16:41] <Ratatosk> f* hell
[16:41] <Ratatosk> f* wankes in here
[16:41] <Forsetim|win> Niord|dinner: well RSS
can just escape it, but RSS can include anything ;)
[16:41] * Sleipnir () Quit (“Leaving”)
[16:41] * spliter () Quit (“Leaving to have a rest”)
[16:41] * Forsetim|win goes back to looking at
the dublin core spec
[16:41] * Ratatosk hm
[16:41] * Ratatosk Forseti is gay
[16:42] <Niord|dinner> Ratatosk doesn’t know
how to use the /me command
[16:42] * Sleipnir () has joined #plone
[16:42] * Forsetim|win knows how to use the boot
though
[16:42] <Niord|dinner> indeed
[16:42] <Tyr> hi Sleipnir
[16:42] * Ratatosk hi
[16:43] * Urd () has left #plone
[16:43] <mehere> I’m wondering what’s wrong
with this code: …
[16:43] * Ratatosk was kicked by Niord|dinner
(Ratatosk bye)
Based on this discussion, we offer a final proposition:

Proposition 6: Members of a team who initiate the devel-
opment of rules and norms, who implicitly or explicitly
enforce rules and norms, and who socialize others in these
rules and norms will be perceived as leaders by other
members.

D. Summary

Combining the discussion of the three aspects of struc-
ture described above results in the conceptual framework
shown in Table 1. For each of the three aspects of struc-
ture, the table describes the embodiment of the structure as
we have conceptualized it for self-organizing distributed
teams, and the actions that reinforce or modify the struc-
tures.

IV. CONCLUSION

In this paper, we presented a conceptual model and a set
of propositions concerning the evolution of software de-
velopment processes within distributed FLOSS develop-
ment projects. Developing a theoretical framework
consolidating a number of theories to understand the dy-
namics within a distributed team is itself a contribution to
the study of distributed teams and learning within organi-
zation literature [58]. We should note that while we are
particular interested in self-organizing teams in which
leadership is emergent, we believe that these propositions
may also apply to case in which leadership is assigned.

Of course, before it can be fully accepted, a theory must
be tested against empirical evidence. We are currently
testing our theory in a field study of FLOSS projects. To
ground the concepts developed above, we are collecting a
wide variety of evidence, including logs of ICT-supported
interactions, bug reports, code changes and project docu-
ments, as well as interviews with developers. The illustra-
tions presented in this paper are examples of these sources.
These data will be analyzed primarily through content
analysis, but also by creating process maps, cognitive maps
and social networks.

Even in its current state of development though, the the-
ory does have some implications for practice. The theory
suggests that team leaders should be particular concerned
with socialization of new members, definition of team
roles and development of rules and norms. Understanding
the processes of teams of independent knowledge workers
working in a distributed environment is important to im-
prove the effectiveness of distributed teams and of the
traditional and non-traditional organizations within which
they exist. The results of our study could serve as guide-
lines (in team governance, task coordination, communica-
tion practices, mentoring, etc.) to improve performance and
foster innovation.

V. ACKNOWLEDGEMENTS

This research was partially supported by NSF Grants 03-
41475 and 04-14468. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

VI. REFERENCES

[1] S. R. Barley and P. S. Tolbert, “Institutionalization
and structuration: Studying the links between action
and institution,” Organization Studies, vol. 18, pp. 93–
117, 1997.

[2] E. S. Raymond, “The cathedral and the bazaar,” First
Monday, vol. 3, 1998.

[3] P. Wayner, Free For All. New York: HarperCollins,
2000.

[4] R. T. Fielding, “Shared leadership in the Apache pro-
ject,” Communications of the ACM, vol. 42, pp. 42–
43, 1999.

[5] M. B. Watson-Manheim, K. M. Chudoba, and K.
Crowston, “Discontinuities and continuities: A new
way to understand virtual work,” Information, Tech-
nology and People, vol. 15, pp. 191–209, 2002.

[6] P. C. van Fenema, “Coordination and control of glob-
ally distributed software projects,” in Erasmus Re-
search Institute of Management. Rotterdam, The
Netherlands: Erasmus University, 2002, pp. 572.

[7] P. S. de Souza, “Asynchronous Organizations for
Multi-Algorithm Problems,” in Department of Electri-
cal and Computer Engineering: Carnegie-Mellon Uni-
versity, 1993.

[8] D. J. Armstrong and P. Cole, “Managing distance and
differences in geographically distributed work
groups,” in Distributed Work, P. Hinds and S. Kiesler,
Eds. Cambridge, MA: MIT Press, 2002, pp. 167–186.

[9] B. Curtis, D. Walz, and J. J. Elam, “Studying the proc-
ess of software design teams,” in Proceedings of the
5th International Software Process Workshop On Ex-
perience With Software Process Models. Kennebunk-
port, Maine, United States, 1990, pp. 52–53.

[10] J. A. Espinosa, R. E. Kraut, J. F. Lerch, S. A. Slaugh-
ter, J. D. Herbsleb, and A. Mockus, “Shared mental
models and coordination in large-scale, distributed
software development,” presented at Twenty-Second
ICIS, New Orleans, LA, 2001.

[11] D. Bandow, “Geographically distributed work groups
and IT: A case study of working relationships and IS
professionals,” in Proceedings of the SIGCPR Confer-
ence, 1997, pp. 87–92.

[12] G. Mark, “Conventions for coordinating electronic
distributed work: A longitudinal study of groupware
use,” in Distributed Work, P. Hinds and S. Kiesler,
Eds. Cambridge, MA: MIT Press, 2002, pp. 259–282.

[13] F. Bélanger and R. Collins, “Distributed Work Ar-
rangements: A Research Framework,” The Informa-
tion Society, vol. 14, pp. 137–152, 1998.

[14] E. Carmel and R. Agarwal, “Tactical approaches for
alleviating distance in global software development,”
IEEE Software, pp. 22–29, 2001.

[15] S. L. Jarvenpaa and D. E. Leidner, “Communication
and trust in global virtual teams,” Organization Sci-
ence, vol. 10, pp. 791–815, 1999.

[16] R. E. Kraut, C. Steinfield, A. P. Chan, B. Butler, and
A. Hoag, “Coordination and virtualization: The role of
electronic networks and personal relationships,” Or-
ganization Science, vol. 10, pp. 722–740, 1999.

[17] W. F. Cascio and S. Shurygailo, “E-leadership and
virtual teams,” Organizational Dynamics, vol. 31, pp.
363–376, 2003.

Table 1. Constructs for study: Embodiments of structures and
actions that reinforce or modify structures.

Structure Structural
embodiment

Actions that cre-
ate/reinforce/ mod-
ify structure

Signification Shared mental
models

Socialization
Conversation
Narration
Task and social lead-
ership

Domination Roles with
differential
access to allo-
cative and
authoritative
resources

Role definition
Role assignment
Socialization
Task and social lead-
ership

Legitimation Norms
Formal rules
and procedures

Rule and norm crea-
tion and change
Problem solving
Political process
Experiential learning
Task and social lead-
ership

[18] Y. Yoo and M. Alavi, “Emergent leadership in virtual
teams: what do emergent leaders do?” Information and
Organization, vol. 14, pp. 27–58, 2004.

[19] I. Zigurs, “Leadership in virtual teams: Oxymoron or
opportunity?” Organizational Dynamics, vol. 31, pp.
339-351, 2003.

[20] C. Pavitt, “Small Group Communication: A Theoreti-
cal Approach (3rd Ed),” vol. 2004, 1998.

[21] R. F. Bales, “The equilibrium problem in small
groups,” in Working papers in the theory of action, T.
Parsons, R. F. Bales, and E. A. Shils, Eds. Glencoe,
IL: Free Press, 1953, pp. 111–161.

[22] D. G. Ancona and D. F. Caldwell, “Beyond task and
maintenance: Defining external functions in groups.,”
Group and Organization Studies, vol. 13, pp. 468–
494, 1988.

[23] S. L. Jarvenpaa, K. Knoll, and D. E. Leidner, “Is Any-
body Out There? Antecedents of Trust in Global Vir-
tual Teams,” Journal of Information Systems, vol. 14,
pp. 29–64, 1998.

[24] T. R. Kayworth and D. E. Leidner, “Leadership effec-
tiveness in global virtual teams,” Journal of Manage-
ment Information Systems, vol. 18, pp. 7–40, 2002.

[25] K. L. Tyran, C. K. Tyran, and M. Shepherd, “Explor-
ing emergent leadership in virtual teams,” in Virtual
Teams That Work: Creating Conditions for Virtual
Team Effectiveness, C. B. Gibbon and S. G. Cohen,
Eds. San Francisco: Jossey-Bass, 2003, pp. 183–195.

[26] Y. Yoo and M. Alavi, “Electronic Mail Usage Pattern
of Emergent Leaders in Distributed Teams.” Cleve-
land, OH: Weatherhead School of Management, Case
Western Reserve University, 2002.

[27] J. R. Hackman and R. E. Walton, “Leading groups in
organizations,” in Designing Effective Work Groups,
P. S. Goodman and Associates, Eds. San Francisco,
CA: Jossey-Bass, 1986, pp. 72–116.

[28] A. Giddens, The Constitution of Society: Outline of the
Theory of Structuration. Berkeley: California, 1984.

[29] S. R. Barley, “Technology as an occasion for structur-
ing: Evidence from the observation of CT scanners
and the social order of radiology departments,” Ad-
ministrative Sciences Quarterly, vol. 31, pp. 78–109,
1986.

[30] G. DeSanctis and B. M. Jackson, “Coordination of
information technology management: Team-based
structures and computer-based communication sys-
tems,” Journal of Management Information Systems,
vol. 10, pp. 85, 1994.

[31] M. Newman and D. Robey, “A social process model
of user-analyst relationships,” MIS Quarterly, vol. 16,
pp. 249–266, 1992.

[32] W. J. Orlikowski, “The duality of technology: Re-
thinking the concept of technology in organizations,”
Organization Science, vol. 3, pp. 398–427, 1992.

[33] G. Walsham, Interpreting Information Systems in
Organizations. Chichester: John-Wiley, 1993.

[34] S. Sarker, F. Lau, and S. Sahay, “Using an adapted
grounded theory approach for inductive theory build-
ing about virtual team development,” DATA BASE for
Advances in Information Systems, vol. 32, pp. 38–56,
2001.

[35] W. J. Orlikowski, “Using technology and constituting
structures: A practice lens for studying technology in
organizations,” Organization Science, vol. 11, pp.
404–428, 2000.

[36] E. W. Stein and B. Vandenbosch, “Organizational
learning during advanced system development: Oppor-
tunities and obstacles,” Journal of Management In-
formation Systems, vol. 13, pp. 115–136, 1996.

[37] M. E. Kondrat, “Actor-centered social work: Re-
visioning “person-in-environment” through a critical
theory lens,” Social Work, vol. 47, pp. 435–448, 2002.

[38] Y. Sarason, “A model of organizational transforma-
tion: The incorporation of organizational identity into
a structuration theory framework,” Academy of Man-
agement Journal, pp. 47–51, 1995.

[39] D. Gregory, “Presences and absences: Time-space
relations and structuration theory,” in Social Theory of
Modern Societies: Anthony Giddens and His Critics.
Cambridge: Cambridge University Press, 1989.

[40] P. Cassell, “The Giddens Reader.” Stanford, CA:
Stanford University Press, 1993.

[41] J. A. Cannon-Bowers and E. Salas, “Shared mental
models in expert decision making,” in Individual and
Group Decision Making, N. J. Castellan, Ed. Hillsdale,
NJ: Lawrence Erlbaum Associates, 1993, pp. 221-246.

[42] G. T. M. Hult, D. J. Ketchen, Jr., and S. F. Slater,
“Information processing, knowledge development and
strategic supply chain performance,” Academy of
Management Journal, vol. 47, pp. 241–253, 2004.

[43] D. Dougherty, “Interpretive barriers to successful
product innovation in large firms,” Organization Sci-
ence, vol. 3, pp. 179–202, 1992.

[44] L. L. Levesque, J. M. Wilson, and D. R. Wholey,
“Cognitive divergence and shared mental models in
software development project teams,” Journal of Or-
ganization Behavior, vol. 22, pp. 135–144, 2001.

[45] R. E. Walton and J. R. Hackman, “Groups under con-
trasting management strategies,” in Designing Effec-
tive Work Groups, P. S. Goodman and Assoc, Eds.
San Francisco, CA: Jossey-Bass, 1986, pp. 168–201.

[46] J. S. Brown and P. Duguid, “Organizational learning
and communities-of-practice: Toward a unified view
of working, learning, and innovation,” Organization
Science, vol. 2, pp. 40–57, 1991.

[47] B. A. Bechky, “Sharing meaning across occupational
communities: The transformation of understanding on
a production floor,” Organization Science, vol. 14, pp.
312–330, 2003.

[48] R. M. Grant, “Toward a knowledge-based theory of
the firm,” Strategic Management Journal, vol. 17, pp.
109–122, 1996.

[49] A. Cox, “Cathedrals, Bazaars and the Town Council,”
1998.

[50] C. Gacek and B. Arief, “The many meanings of Open
Source,” IEEE Software, vol. 21, pp. 34–40, 2004.

[51] G. K. Lee and R. E. Cole, “From a firm-based to a
community-based model of knowledge creation: The
case of Linux kernel development,” Organization Sci-
ence, vol. 14, pp. 633–649, 2003.

[52] J. Y. Moon and L. Sproull, “Essence of distributed
work: The case of Linux kernel,” First Monday, vol. 5,
2000.

[53] J. G. March, M. Schulz, and X. Zhou, The Dynamics
of Rules: Change in Written Organizational Codes.
Stanford, CA: Stanford University Press, 2000.

[54] C. Argyris and D. A. Schön, Organizational Learning.
London: Addison-Wesley, 1978.

[55] J. Hayes and C. W. Allinson, “Cognitive style and the
theory and practice of individual and collective learn-
ing in organizations,” Human Relations, vol. 51, pp.
847-871, 1998.

[56] D. C. Baker, “A qualitative and quantitative analysis
of verbal style and the elimination of potential leaders
in small groups.,” Communication Quarterly, vol. 38,
pp. 13–26, 1990.

[57] S. M. Ketrow, “Communication role specializations
and perceptions of leadership,” Small Group Re-
search, vol. 22, pp. 492–514, 1991.

[58] D. Robey, H. M. Khoo, and C. Powers, “Situated-
learning in cross-functional virtual teams,” IEEE
Transactions on Professional Communication, pp. 51–
66, 2000.

