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We present a conceptual framework for socio-technical affordances for stigmergic coordination, that is,
coordination supported by a shared work product. Based on research on free/libre open source software
development, we theorize that stigmergic coordination depends on three sets of socio-technical affordances: the
visibility and combinability of the work, along with defined genres of work contributions. As a demonstration
of the utility of the developed framework, we use it as the basis for the design and implementation of a system,
MIDST, that supports these affordances and that we thus expect to support stigmergic coordination. We
describe an initial assessment of the impact of the tool on the work of project teams of three to six data-science
students that suggests that the tool was useful but also in need of further development. We conclude with
plans for future research and an assessment of theory-driven system design.
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1 INTRODUCTION
The goal of the project described in this paper is to better support coordination in data-science
teams by transferring findings about coordination from another setting, namely free/libre open
source software (FLOSS) development. FLOSS development was chosen as a source of ideas about
coordination because of the visible success of FLOSS projects in harnessing the efforts of teams
of developers. Data science was selected as a target domain because there is a recognized need
for guidance on how data scientists should work together: data-science projects need to focus not
just on machine-learning algorithms, but also on people and process [33, 34, 62]. As in FLOSS,
task coordination is a key challenge for members of a data-science project [31], e.g., dividing the
project into manageable pieces, assigning pieces to team members, tracking progress, dealing
with interdependencies and integrating the pieces to a final project. Finally, while data science is
distinct from software development, there is enough overlap to make the transfer of coordination
approaches plausible. Data science is an emerging discipline that combines expertise across a
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range of domains, including software development but also data management and statistics. Data-
science projects have goals such as identifying correlations and causal relationships, classifying
and predicting events, identifying patterns and anomalies or inferring probabilities, interest and
sentiment [27]. A common data-science tool is R [1]: analyses are performed by writing what are
essentially programs in the R language that take data as input and output analysis results.

One approach to transfer findings is to simply reuse for the target setting tools that have proven
to be useful for the source. For instance, data scientists could use git and GitHub to share R program
files and to coordinate their work. However, tools intended for one kind of work product and
practice may not be a perfect fit to others. For instance, GitHub may make tacit assumptions about
the kinds of files being shared that are not descriptive of a data science context [10]. Specifically,
contemporary software development is typically viewed within an object-oriented framework,
while data-science analyses are typically more of a data-driven workflow [42]. As well, raw and
intermediate data files can be quite large, making them unwieldy to upload or download. Hence,
the specific features of tools that would be useful to data-science teams might be different than
the features that are important for FLOSS development teams, making it difficult to know how to
configure a data-science collaboration environment using existing tools [49].
We therefore explore an alternative approach, namely transferring findings about supporting

coordination at more abstract level. Specifically we: 1) identify a novel form of coordination that
appears to be part of the success of FLOSS development, namely stigmergic coordination [12],
2) advance stigmergic coordination theory by developing a conceptual framework for the socio-
technical affordances that support stigmergic coordination in FLOSS, and 3) show the utility of
the resulting conceptual framework by using it to guide design of a system that implements these
affordances for a data-science setting. The paper includes a preliminary exploratory study of the
use of the system as early-stage guidance for our system design. However, we emphasize that
the evaluation is preliminary and exploratory and that the main contribution of the paper is a
conceptual framework for system affordances that support stigmergic coordination, the utility
of which is demonstrated through its use to guide system design (i.e., steps 2 and 3). The paper
concludes with plans for future research and reflections on theory-based system development.

2 LITERATURE REVIEW
The goal of this paper is to present a conceptual framework for affordances that support stigmergic
coordination. We therefore first review literature on stigmergic coordination to explain the concept
and why it might be of interest for supporting data-science teams. Second, we draw on research
on the role of documents in supporting collaborative work to develop a framework describing the
affordances needed to support stigmergic coordination.

2.1 Stigmergic Coordination
In this section, we draw on research on coordination in FLOSS teams to describe a paradox that
motivates the project: the apparent ability of certain distributed teams to coordinate with little or
no explicit communication. This finding emerged from studies of how FLOSS developers coordinate
[12, 40, 41]. Somewhat unexpectedly, these studies found little evidence of overt coordination:
FLOSS developers seemed to communicate less often than expected about coding tasks. The lack
of evidence was surprising considering the transparency of FLOSS projects. It was expected to
find direct, discursive communication in email or other discussion fora through which developers
interact but there were few examples. The lack of direct interaction around the work has echoes in
other research findings. For example, research has found that developers mostly self-assign work
rather than have it assigned to them [22, 23] and often make decisions about code without explicitly
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evaluating options [37, 38]. Interestingly, when developers do discuss their work, they often refer
directly to the software code.
In light of these findings, researchers have theorized that FLOSS development work can be

coordinated at least in part through the code, the outcome of the work itself, a mode of coordination
analogous to the biological process of stigmergy [35]. Heylighen defines stigmergy thusly: “A
process is stigmergic if the work... done by one agent provides a stimulus (‘stigma’) that entices
other agents to continue the job” [39]. Accordingly, stigmergic coordination can be defined as
coordination based on signals from the shared work. For example, ants follow scent trails to food
found by other ants, thus assigning labour to the most promising sources without the need for
explicit interaction. The organization of the collective action emerges from the interaction of the
individuals and the evolving environment, rather than from a shared plan or direct interaction.
While stigmergy was formulated to explain the behaviour of social insects following simple

behavioural rules, it has also been invoked to explain human behaviours: the formation of trails in a
field as people follow paths initially laid down by others (similar to ant trails), or markets, as buyers
and sellers interact through price signals [56]. For humans and intelligent systems, the signs and
processing can be more sophisticated than for insects [58]. For example, the shared environment
can be a complex workspace including annotations. Tummolini & Castelfranchi [73] developed
a typology of different kinds of messages possible from signs, such as having the ability to do
something, having done something or having a goal. In CSCW, Christensen [18–20] discussed how
architects and builders coordinate their tasks through “the material field of work” such as drawings,
building on earlier work in CSCW focusing on coordination through the “field of work”, including
changes in shared databases [64].
Stigmergy has been suggested in particular as an interpretation of how FLOSS developers

coordinate [12], what Kalliamvakou et al. called a “code-centric collaboration” perspective [43].
FLOSS developers mostly work with the code that they are developing, managed with source
code control systems that provide status about the state of the code and development. Stigmergic
coordination is valuable for FLOSS developers as it enables good coordination of the the development
process while minimizing the need for explicit communication that can be costly, especially in
a distributed environment such as FLOSS development. Stigmergy has also been argued as a
mechanism in online work more generally. For instance, Elliot [29] argued that “[c]ollaboration in
large groups is dependent on stigmergy,” with the specific example of authoring on Wikis.
The question then is how work products can support coordination. From this perspective, we

state a more specific question for our theorizing to advance stigmergic coordination theory: What
socio-technical affordances of shared-work systems enable stigmergic coordination? By socio-
technical affordances, we mean the features of the technology used and the practices around that
technology. For example, the source-code control systems commonly used by FLOSS developers
provide notifications of code submissions that enable other developers to maintain awareness of the
state of the code to support coordination. But to interpret these change messages, developers need
some level of technical skill and mental models of the code structure, another kind of affordance.
They may also be accustomed to creating code in a way that is easier for others to interpret. The
inherent nature of the coding task itself may create the need for specific kinds of coordination that
are particularly amenable to stigmergy. Note that only the first of these affordances (notifications)
is provided by reusing tools; the rest may or may not be transferable from domain to domain
depending on the nature of the work practices and products.

If we can identify the socio-technical affordances important for FLOSS development, we may be
able to develop a system and specify associated work practices to support them in another setting,
thus enabling stigmergic coordination in that context. The advantage of stigmergic coordination
is that people could achieve well-coordinated work with less explicit effort. And as in FLOSS
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development, such coordination could be particularly valuable for distributed teams that face
greater challenges in communicating for explicit coordination.

2.2 A Conceptual Framework for Socio-technical Affordances to Support Stigmergic
Coordination

In this section we advance stigmergic coordination theory by building a conceptual framework for
the socio-technical affordances that support stigmergic coordination. Our approach is to build a
framework based on evidence from FLOSS development, which we then apply to the context of
data-science projects. To theorize what affordances of work support coordination, we turn to the
literature on documents and work [55]. Code, the shared work in the case of FLOSS development
and data science, is a semiotic product recorded on a perennial substrate that is endowed with
specific attributes intended to facilitate specific practices [76], thus making it a kind of document.
Code differs from other kinds of documents by serving two audiences, one being a machine, the
other programmers. However, we focus on the latter, describing properties of code that allows
developers or data scientists to share their work with colleagues and to read, understand and
respond to their intentions.

2.2.1 Documents Enable Coordination. Scholars have described how documentation and other
accounts of work play a central role in the coordination of work [13, 14, 52–54, 67, 71, 72]. These
perspectives have long pointed to the double role of documents as both “models of” work and
“models for” work. For the first, documents provide an account of reality as workers manipulate text
and other symbolic structures so as to parallel them with reality. For example, data scientists may
carefully document the code they have constructed to create a report of the work (analysis) done.
This view of work as a document can be seen in the emerging concept of data-science notebooks
[45], which integrate code, comments about the code and the results / visualizations of the code.

But documents also provide a basis from which people further manipulate the world. For exam-
ple, data-science reports are not simply accounts of work completed: the report, no matter how
documented, can also guide ongoing work by suggesting what is left to be done, such as suggesting
an attribute requiring further analysis. Taking inspiration from Smith [67] and Bakhtin [5], we
suggest that a work product is rarely completely original; it is always an answer (i.e., a response) to
work that precedes it, and is therefore always conditioned by, and in turn qualifies, the prior work.
What the data scientist does when facing work is responsive and partially determined by what has
been going on up until now. The analytical reports are thus accounts “for reality”, as they provide
a blueprint of the analysis taking shape. While typically used for exploratory data analysis, the
previously-mentioned notebooks provide a hint at treating the data-science analysis as a document,
in that these documents provide both “models of” work done and “models for” work to be done.
Documents in this way offer a double accountability: when documenting the analysis of a data set,
data scientists mold the account to the reality of the code on their computers and at the same time,
mold their ongoing coding to the desires of the client.
Our focus on stigmergic coordination is how documents can serve as a model for work. With

this focus in mind, three concepts from document studies stand out as helpful in articulating how
documents can serve as a model for work: visibility, genre and combinability. We address each of
these in turn.

2.2.2 Visibility of Work. The first key feature of documents is their visibility. Obvious as it may
seem, making work visible to others is not a straightforward process. As discussed by Suchman
[72], some work may be more visible than other work; some work may cover up previous activity
and render it invisible. For example, service work is notoriously hard to make visible: The better
such work is done, the less visible it is to those who benefit from it. Understanding what elements
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of work are accessible and how its visibility may change over time is central to understanding how
work may or may not serve as a model for future work.

Visibility is closely related to the concepts of awareness and of system transparency. There
has been a stream of research in CSCW and elsewhere that demonstrates the importance of team
member awareness for supporting collaborative work [e.g., 16, 17, 19, 28, 36]. Christensen [19]
described actions a person might take to make a co-worker aware of an issue, and so distinguishes
awareness from stigmergy, as “stigmergy does not entail making a distinction between the work
and extra activities aimed solely at coordinating the work”, such as drawing a co-worker’s attention.
Similarly, in contrast to active awareness (one participant calling for the attention of another),
Dourish & Bellotti [28] argued for the importance of passive awareness mechanisms, which can be
interpreted as supporting stigmergy.

Researchers have proposed awareness displays that allow a teammember to develop an awareness
of the actions of other team members without requiring the others to call attention to their work.
Carroll and colleagues [16, 17] examine how awareness can support development of common
ground, community of practice, social capital and human development in team. In this project, we
focus more narrowly on how awareness of work supports coordination. Gutwin & Greenberg [36]
present a framework for “workspace awareness” for real-time groupware systems. They note that
awareness includes both problems of obtaining useful information and making sense of it, though
they focus on the former. Their framework includes both what kind of information is available (e.g.,
who is doing what where?) and how it is gathered, which includes gathering information from
intentional communication as well as from what people are doing and from artifacts, which we
would interpret as supporting stigmergic coordination.

A second related concept is system translucency [30] or transparency [21, 25, 26, 69], meaning
visibility of details of organizational processes or functions. Researchers have noted that technology
enables new forms of transparency, e.g., as in GitHub, a software development site [24]. Consistent
with our analysis of stigmergy, research has analyzed transparency as supporting information
exchange or communication [69]. Researchers have noted similar problems with awareness and
transparency, such as the potential for information overload from having to review too much
information or that making too much visible may inhibit the willingness to share work [9, 25].

System transparency provides information that can influence how people work, i.e., one can view
transparency as a system feature that might support awareness. Dabbish, et al. [26] note specifically
that transparency is helpful for coordination. They list numerous uses of visibility information,
such as including dependencies with other projects [25]. They further note that being able to see
something means “much less need for routine technical communication” [25], suggesting that
transparency is substituting for explicit coordination.
For work to be visible beyond a physically-restricted space, it must become mobile [48]. Most

obviously, FLOSS development infrastructures support the mobility of work by being Internet-based.
Any FLOSS developer can download the source code from the source-code control system (SCCS)
and have access to others’ work as a basis on which they can build their own. Further, many SCCS
provide a mechanism to push changes to other workspaces, rather than having to wait for others to
seek them out. By being available in multiple places, code can coordinate work in different settings.
With ubiquitous access to the server containing the code, developers can more easily use others’
work as a model for their own work. We expect the technical affordance of sharing files to be easy
to translate to a data-science setting, though the size of data files may pose a challenge.
Visibility can include more than just the work itself. For example, SCCS typically provide a

revision history: all changes made to each module in the system including what was created or
deleted by whom, when. Many changes include short notes that can explain why a change was
made, though many changes do not, apparently expecting the reader to examine the code itself.
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Such histories not only serve as “models of” work but can also point forward by depicting the
generally-accepted work process. For a newcomer, such histories provide a window to how things
are done, what tasks tend to follow what tasks and what is regarded as good and opposed to bad
(i.e., reverted) work.

Research on visibility and transparency, in particular studies of SCCS, can clearly be quite
informative for designing systems to support stigmergic coordination. However, this stream of
research has not specifically focused on the socio-technical affordances that enable users to make
sense of and to use the provided stigma as models for work to support coordination, which is the
goal of the current theorizing. Visibility of FLOSS work in particular is promoted both through
the technology and through cultural norms about development that ensure that the work is
understandable as a model for further work. For instance, a widely-acknowledged culture norm in
open source is to “check in early, and check in often.” If people do not share their work often (by
checking it in to the SCCS), they are not making it visible to other participants to build on. Further,
there are norms for providing “atomic commits,” that is, developers are encouraged to address
only one change or topic when making a commit, leading to many small commits rather than
occasional large ones [3]. Large infrequent commits (“code bombs”) are harder for other developers
to understand, again hampering visibility. Indeed, a common complaint about a code contribution
is that it is too large for developers to easily understand.

This research suggests that a system to support team coordination needs to provide visibility of
the work to facilitate awareness of others’ activities and mobility of the work to make it useful
across settings. However, practices need to be developed to help team members ensure that the
activities they make visible will be interpretable by others and to know what kinds of activities
performed by others to attend to. For example, the FLOSS practice of making small commits might
be difficult to translate to data science, as data scientists are not accustomed to thinking about work
in terms of individual bug fixes or features. And simply sharing changes made to one large analysis
file will not be effective if there are many dependencies among parts of the code, making it difficult
to make atomic changes.

2.2.3 Genres. A second important feature of documents is that they come in different types, which
we refer to as genres [75]. The notion of a genre combines together expected regularities of form and
purpose [51]. For example, common document genres relating to an academic paper include paper
submission, reviews, editor’s report, decision letter, reply to reviews, revision, acceptance letter,
final submission, galley proof, copyright release and published paper. Each has a characteristic
form (e.g., a review template) and typical purpose. As a result, people can recognize a document as
a model for possible action when they recognize from the genre of the document what they are
expected to do with it [52]. Furthermore, documents related to work (and so we argue, the work
itself) are organized into what are called genre systems [51], formalized sequences of documents
of particular genres providing more-or-less standardized methods for recognizing what might be
done and what does get done as legitimate work, as in the sequence of documents involved in
publishing an academic paper.

Turning to FLOSS, we encounter a range of genres: bug reports, source code, commit messages,
release notes, user documentation, requirements documents, designs and so on. On completing a
piece of code, a developer invokes a specific genre of work (e.g., a push request if using GitHub).
Colleagues will be able to pick up and work with the code more easily (i.e., be able to coordinate their
own work stigmergically) because it invokes that genre and so comes with certain expectations.
Furthermore, a code module itself has a structure in which each component has more-or-less

well-defined purposes associated with particular functionalities. In other words, there are subgenres
of source code: each module of a program has its own specific purpose and so its own subgenre (e.g.,
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some modules manage the interface, while others deal with interactions among data sources). In a
well-structured program, the purpose of each module is clear, i.e., it is recognizable as an instance of
the subgenre and thus, the module is useable by others as a model for work. In a poorly structured
program, the purpose of particular module may be hard to determine or, in fact, muddled and
unclear. This confusion may not directly affect the functionality of the code, but in these cases, the
module does not instantiate a genre. Future developers will have difficulty adding new functionality
because the current work outcomes do not make it clear how to build further.
Though the specific genres themselves are specific to a work setting, the notion of genres is

general, that is, we expect to also find genres of work in data science, though perhaps not as well
defined, given the emerging nature of the field. We suggest that in this domain, a genre system can
be viewed as a standardized flow of work. In fact, there are two different potential workflows. First,
one can view the status of a module (document) as a kind of genre. For example, within a Kanban
project management context, one can view a module as flowing from “to do” to “in progress” to
“validate” and then finally to “done” [2]. These phases can be seen as genres because the type of
tasks that are appropriate or necessary for a module changes as one moves, for example, from “in
progress” to “validate”.
The second form of genre focuses on the nature of work done by the module, similar to the

notion of a code subgenre. The data-science process includes a number of distinct and typified
actions, such as gaining access to data sources, code to clean the data, analysis code and so on.
These genres are associated with particular purposes. For example, the purpose of the code cleaning
is to create a more usable data set, whereas exploratory analysis is used to provide information to
data scientists about the data. Some code is used nearly exclusively by data scientists (e.g., data
cleaning), while other code, such as the data analysis, is often shared between clients and data
scientists, at least in terms of the results of the code. By looking at these work outputs, experienced
data scientists can determine which tasks might be appropriate to do next.
A key point in the analysis of work in terms of genres is that for genres to enable documents

to function as models for work they must be part of the conventions of practice shared among
members of particular communities. Genres are not naturally occurring: they are rather learned as
part of membership of such communities. As new participants are socialized into the communities,
they gradually acquire familiarity with the prominent genres. Therefore, training will be needed
in the kinds of genres that are suitable for data science and how to work with them. However, a
system can provide features that support documents of different genres by making it clear first
what genres exist and second what actions are appropriate for documents of different genres.

2.2.4 Combinability. A final important characteristic of work documents for stigmergic coordina-
tion is combinability. For the work to be a model for future work, the work must be combinable
and improvable in modular increments [41, 48]. Most work tasks are layered and complex: new
work contributions can be adjusted and added to existing outcomes. A piece of code might start
out as an incomplete frame, a scaffold on which other parts get added in some organized sequence.
Later, new functionality can be added to the existing structure.
Combinability in FLOSS development is supported by both cultural norms and the SCCS in-

frastructure. Atomic commits, mentioned above as important for understandability of code, are
also important for combinability. It is easier to combine code with a focused commit than with a
commit that does multiple things and touches bits and pieces of dozens of files in the process. It is
likewise easier to back out a focused commit if things should go wrong. Developers are also warned:
“Don’t break the build”, which means that the main set of files in the SCCS should always compile
and run. This practice ensures that any developer who downloads the code will be able to work
with it (i.e., it will be useful as a model for future work). Combinability in FLOSS development is
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further supported by the SCCS’s capability to merge work from different contributors. For example,
developers can try out experimental enhancements on the code in a branch before committing it,
or work in parallel and then merge their efforts.
Combinability of FLOSS work is greatly facilitated by the typically high modularity of the

developed code. The modularity of a solution is the degree to which the components of a solution
can be separated, worked on independently and recombined [63]. Modular code means that changes
are often isolated to a few parts of a system, making them more atomic.

Another kind of modularity, task modularity, involves breaking up a problem into discrete chunks
[47] and “building a complex product or process from smaller subsystems that can be designed and
worked on independently yet function together as a whole” [6]. Task modularity is related to code
modularity in the sense that in a highly modular system, developing a single module is more likely
to be a separate (i.e., modular) task and developers need understand only a portion of the system to
make a change. Task modularity supports complex problem-solving by enabling a team member to
focus on smaller challenges, rather than needing to focus on the entire problem [7, 15]. A further
benefit of task modularity is that it helps reduce the need to coordinate details of a team member’s
work with other team members [7]. A developer can run the code with their proposed changes and
obtain direct feedback about the success or failure of their changes. This approach allows them
to iteratively enhance their understanding of the task and to modify their strategy for managing
dependencies between the existing analysis and what they are trying to accomplish.

With respect to data science, the use of R [1] is an example of one aspect of leveraging modularity.
Specifically, the Comprehensive R Archive Network (CRAN) contains thousands of “packages” that
can be installed and loaded as needed. These packages enable a team to easily combine modules
developed by others, such as using an advanced machine learning module via a function call.
However, by itself R does little to promote modularity of an analysis script or the task modularity
of a team’s work.
Contributions to data science analyses are potentially more combinable than suggested by

current practice. For example, data-cleaning functionality can be used by various predictive analytic
modules, which could be created either in parallel with the development of data cleaning, or at some
point in the future. However, to fully encourage combinability will require analysts to develop more
modular code to achieve the benefits of decomposing tasks and allowing different team members
to work on different aspects of the project. Modularity is primarily a function of the development
practices adopted by the team. As noted, data scientists typically think about analyses as a flow
of data, and not as modules, but a modular approach can be encouraged, e.g., through training.
Further, a system can provide features that promote and support development of more modular
approaches to an analysis.

2.2.5 Summary. Figure 1 shows our conceptual framework. We expect that a system that imple-
ments features that implement the three sets of affordances described above (specifically affordances
related to visibility, genre and combinability) will support stigmergic coordination in the team
using it. These affordances work together to support stigmergic coordination. Visibility means that
a user will be able to see the work that others are doing or have done in order to guide their own
work. Having work products with clear genres will enable the user to comprehend the purpose
of those pieces of work, which again allow them to use them to guide their own work. Finally,
combinability of work means that users will face fewer issues making others’ work fit with theirs
and vice versa.
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Fig. 1. Conceptual Framework for System Affordances Supporting Stigmergic Coordination

3 SYSTEM DESIGN
The previous section described three sets of socio-technical affordances that we suggest are needed
for stigmergic coordination—visibility, genres and combinability—and suggested approaches to
implementing each for data-science teams. In this section, we discuss in more detail the design and
implementation of a data-science team coordination tool to provide these affordances.

3.1 System Overview
MIDST (Modular Interactive Data Science Tool) is a web-based data-science application that was
developed for this project. The tool enables a team of data scientists to collaborate on developing an
analysis, using a common data-science programming language R [1]. When using MIDST, analyses
are performed by writing what are essentially programs in the R language that take data as input
and output analysis results.
MIDST has three integrated views that team members use to create an analysis (or part of an

analysis): the network, task and code views. Each are described below.

3.1.1 Network View. The main view of the analysis is as a workflow, in MIDST’s network view. As
with other data-flow tools, the network view helps users break an analysis into smaller chunks of
work (nodes), and then visualize the flow of data through the nodes that comprise the analysis.

Fig. 2. Network view showing data flowing between nodes and nodes with execution errors (an “!”).
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There are three kinds of nodes: executable nodes that contain R code (code modules), data nodes that
can be connected to an input of a node and visualization nodes that can be connected to an output.
For example, Figure 2 shows a simple analysis that reads in a raw data file (the raw_data.csv
node), cleans and saves the data file (the clean.R code node outputting to the clean_data.csv
data node) and generate a histogram (the OzoneHist.R code node reading from the clean.R node
and outputting to the hist.png visualization node).
In the network view, users can add new nodes, define a node’s inputs and outputs and connect

nodes together, implementing a flow of data between the nodes. As users update the network (e.g.,
adding nodes or connections), the changes are propagated to other users viewing the network.
Users can execute the entire network in the network view by pressing the ‘Run’ button at the top
of the network view window. Any errors that occur during execution of the network are visible as
failed nodes, shown by the exclamation mark in Figure 2. Other controls push or pull code changes
or change views (discussed below).

3.1.2 Task View. A second view of the node is a task view, shown in Figure 3. Similar to other task
boards, such as Trello (www.trello.com), the status of each code node is indicated by the column it
appears in. Users can update the status of a node by simply dragging it to a new column. Tasks
(i.e., nodes) can also be created in this view, which will add them to the workflow, but without
connections. MIDST’s task view provides a quick overview of the project status: what is being
worked on, who is working on it and the overall balance between completed and uncompleted
work. Status is also shown in the network view (Figure 2): each module is colored according to its
status.

3.1.3 Code View. Third, by clicking twice on a code node, within either the network or task view,
a user drills down to the R code for the node. (Clicking on a data or visualization node gives a
preview.) An example is shown in Figure 4, which happens to be the R code for the clean module
from Figure 2. In this view the user writes, edits, runs and debugs R code to implement the required
functionality for the node, similar to using RStudio, the most common interactive development
environment for R. Within the code editor, a user can run the entire node or execute a single line
of code (e.g., for debugging). Output from execution is shown in the bottom window pane of the
code editor. This output is for the most recent run of the node, whether that was due to the full
network being run in the network view, the full node being run in the code-editor view, or a single
line being executed.
The node’s input ports and output ports, the connections between the node and other nodes,

are shown on either side of the code. An automatically-generated R preamble reads the data from
the most recent run of the prior nodes and makes them available to the user’s R script in variables

Fig. 3. Task status view
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Fig. 4. Edit interface for code in a node, showing code, input and output ports and execution output

with the same name as the input ports; a postamble takes the contents of the named variables and
adds them to the output ports to transfer to other nodes. The author of the R code is responsible
for making the connection between these input and output variables.
The code in a code node is shared with other users viewing the project. We noted above that

the system updates the view of the network dynamically: as users add nodes or connections, these
changes are immediately reflected to other users. In contrast, users must explicitly share changes
to code, either for one module or the entire network, using a graphical code management system
that lets them “push” their updates to and “pull” others’ updates from a centralized code repository.
The difference between these two approaches is because as a user edits code, it is likely that their
code will often be in an intermediate, non-working condition. If such changes were pushed as they
are made (e.g., using a shared-editor paradigm such as Google Docs), other users would often find
that they could no longer run the entire network, which could block their own work (“breaking
the build”). Instead, users can wait until their code is in a usable state before sharing it and defer
accepting others’ changes until they are ready to incorporate them, since changes could potentially
require them to update their own code to fit.

Figure 4 shows other collaboration features within the editor. For example, via the status widget
on this view, a user can update the status and owner of a node. Team members can post messages
about a node in the discussion widget. The MIDST system also posts messages here, e.g., to inform
a user when the code being viewed is out-of-date (i.e., that another team member has shared a
more recent version).

3.2 Other Design Decisions
In order to make MIDST user-friendly and easy-to-use, many user-interface design questions had
to be addressed. For example, one can hover over an output item and see a preview of that data or
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easily switch between views. Many of these features are to improve functionality or ease of use.
However, several novel coordination-related requirements emerged as we implemented the system,
which we briefly discuss in this section.

3.2.1 Node Ownership. A common problem in a source-code control system is handling multiple
changes to the same document, e.g., by merging non-conflicting changes and providing an interface
for a person to resolve conflicting changes. For the current version of the system, we decided to
side step this problem. Since a node is assigned to particular a user, in MIDST only the owner of
the node is allowed to push changes to the code. If other team members want to make changes,
they can change ownership and do it, or discuss the changes with the node owner.

3.2.2 System Hints and Notifications. As noted above, users must explicit decide when to share
code. To reduce the need for explicit coordination about changes, MIDST proactively suggests when
a team member should push an update to the central repository as well as providing reminders
when a team member needs to pull the updates from the team’s central repository. MIDST notifies
teammembers, via the discussion widget in the code view or by highlighting the icon in the network
view, that another team member has pushed updated code, and also suggests, when viewing the
network, that the updated code should be “pulled” from the team’s repository (though as noted
above, the timing is up to the user).

MIDST also helps a team member keep the status of their nodes up-to-date. For example, when
someone starts to edit a node, if that node is not currently owned by another user, the system
suggests that the current user own the node and move it to “in progress”. If a user tries to edit a
node owned by another team member, then the system reminds the user that another team member
owns that node. Furthermore, when a user pushes code to share it with other teammembers, MIDST
asks if that node’s status should be moved to “validating”.

3.2.3 Shared Execution Environment. Our initial implementation of the systemwas as an application
that would run on the user’s computer to provide the user interface and R session. The application
shared network and code changes via GitHub. We soon discovered that sharing code was not
enough to enable easy coordination. Users also need to share all the dependencies that the code
relies on, such as data files and libraries (needing particular libraries can be a problem also in
FLOSS development). Users not infrequently encountered problems running code provided by their
teammates, e.g., file paths that needed to be changed or new libraries that needed to be installed.
Also, users with less powerful computers faced performance issues.

To avoid these problems, the current version of MIDST provides access to a common computing
infrastructure in which each user has a clone of the same computing environment. More specifically,
the current implementation is a web application, meaning that all the R code runs on a common
server. This shared execution environment greatly facilitates team collaboration since issues such
as what libraries and what versions are installed as well as other details such as location of data
files are eliminated. As well, it avoids a dependency on GitHub for sharing code.

3.3 MIDST’s Support of Affordances for Stigmergic Coordination
Having reviewed the functionality of the tool, we next discuss how it implements the three sets of
socio-technical affordances developed above.

3.3.1 Visibility. There are several ways MIDST supports visibility of code status and activity. First,
the breakdown of work that is required within the project is clearly shown within both the network
and task views. In addition, how the data flows through the system is visualized via the node
connections in the network view. Second, MIDST shows node ownership (in the code and task
views) and node status. Changes in these node attributes are visually shared in the network view
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(via the colouring and other node decorations) and in the code view (via messages from a MIDST
bot in the discussion widget). Third, nodes with errors are clearly shown in the network view (via
the ‘!’ icon on a node). Fourth, changes to code made by other users are highlighted as “nodes that
need to be pulled” both via a message in the discussion widget (in the code view) as well as in the
network view. Finally, the system shares the network structure and code with all users, making
their work mobile.

3.3.2 Genres. There are three ways in which MIDST supports genres. First, MIDST supports the
notion that each node has a status, which we argue is one form of genre. Second, MIDST supports
different node types: input nodes, code nodes and output visualization nodes. Finally, there is
an implicit set of genres of code nodes in the data-flow pipeline defined in the network view.
The network view shows how data flows from, for example, reading data, to cleaning data, to
exploratory analysis to more advanced machine learning to outputs. Thus, where the node is within
the network provides context as to the type of work being done within that node. Collectively,
these genres helps the data scientist understand the context and goal of the node, independent of
the actual details within the node. Further support of genres is a goal for future development, as
discussed in Section 5.2.2.

3.3.3 Combinability. Supporting combinability of work was a key goal in the design of the system
as our initial investigations of data science had suggested that it was problematic. MIDST supports
combinability via the tool’s encouragement for users to create modular components, as well as the
ability to merge different users’ work (while also reducing the potential for duplication of work).
Specifically, MIDST supports modularity via the network view, in which nodes of R code have
clearly defined input and output ports to connect to other nodes. These input and output ports
act as an interface definition, clarifying the work to be accomplished by the node. With respect to
merging work, MIDST supports an easy way to push and pull code, but equally important, a way
to note that a node is “owned” by a person on the team. When appropriate MIDST reminds that
person to push the code to the central repository and then reminds the other team members to pull.

3.3.4 Summary. In summary, MIDST offers a shared workplace where the cooperative work is
facilitated, not only by requiring active construction from the participants of a common information
space in which users can perceive, access and manipulate the same set of information, but more
importantly by providing a shared view. In fact, the core of the notion of a shared view is that
multiple actors perceive the same object (the network of node in our case study, containing tasks,
description and code or implementation) in the same state and perceive any changes in the state
of the object concurrently. Any changes to the object affected by one user will be immediately
perceptible to the other users.

3.4 System Implementation
The system architecture for MIDST is shown in Figure 5. The front-end of the system is a web
browser. Plotting of the network workflow uses the cytoscape Javascript library. The back-end
is a Python web application built using the Flask framework. The web application uses a Mongo
database to store data about the network, user projects, code execution and collaboration features,
and the server file system to store project files, R scripts and data files. Each user has access to
his or her projects and the projects that are shared with him or her by others on the team. The
execution of R code in users’ R sessions is managed using the RStudio server software. Our initial
deployment has been for a data-science class. In this setting, the instructor has privileges to access
all projects of his or her class. The entire system is hosted on an Ubuntu server with 16 cores, 32
GB RAM and 500 GB disk space.
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Fig. 5. MIDST System Architecture

3.5 Comparison to Other Systems
MIDST has similarities to and draws features from many existing systems, but the purpose and
combination of features is unique due to the design intended to support stigmergic coordination,
making the system a novel contribution. MIDST implements the following features: a workflow for
data analysis, task-status tracking, R-code editing and execution, code sharing, a shared execution
environment and group task support. We compare MIDST to other tools that implement these
features to highlight points of similarity and difference.

A number of workflow tools have been developed to support data analysis, e.g., KNIME. Another
research system StatWire [70] shares MIDST’s goals of using a workflow system to promote code
modularity. MIDST differs from these systems in two important respects. First, while existing tools
are tools for individuals, MIDST is designed to support a team. Second, the goal of many workflow
tools is to enable non-programmers to develop an analysis by combining pre-existing modules.
In contrast, in MIDST, we expect users to write their own R code for the code nodes. A more
production-oriented version of MIDST could provide a library of nodes, though doing so would
break the current one-to-one mapping of code nodes to tasks (discussed below in Section 5.2.3).

Another feature of MIDST is to provide a way to track and make visible the status of development
tasks. There are numerous systems that support task tracking, such as Trello. In contrast to those
system, in MIDST the task view is directly tied to the work being done, meaning that a user can
click on a task and immediately start editing the code. This connection between a task and a node
also helps users to create tasks of an appropriate size and scope. And contrariwise, integration of
task statuses is not a feature of other code-development tools.
In some respects, MIDST is an integrated development environment (IDE) for R development,

making it comparable to IDE tools such as RStudio. Indeed, a frequent complaint from users is that
its functionality is lacking compared to RStudio. However, RStudio does not support structuring
an analysis in modules, which is the goal of the workflow view of MIDST. Nor is it intended to
support team collaboration.

Another feature ofMIDST is code sharing. There aremany systems for sharing code and providing
updates about the status of the code, such as GitHub. Some of these systems also integrate task
tracking. Code sharing may also be integrated with an IDE to make it convenient to check in
recently-edited code. However, these tools are designed to facilitate sharing of files. We argued
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above that these tools do support stigmergic coordination in FLOSS. However, by themselves they
are not sufficient to support stigmergy for data science as they do not provide affordances for
creating modules that are meaningful for this setting, meaning that the individuals’ work lacks
combinability.

A final feature of MIDST is the shared execution environment. R Studio Server similarly allows
users to run an R session on a server and data analysis notebooks (e.g., Jupyter [45]) can also provide
access to a shared environment. Another approach to managing dependencies is a container system
such as Docker [11] that bundles together a program with all of its dependencies. However, these
tools do not provide support for modularizing an analysis nor for fine-grained collaboration. For
example, Rule et al. [59] observe that notebooks often become difficult to navigate and understand,
which discourages sharing and reuse. To try and address this challenge, they introduced the concept
of annotated cell folding (i.e., the ability to hide/unhide blocks of code), which was somewhat
helpful, but also caused someone new, who was trying to read the code, to sometimes overlook
components of the analysis that were hidden.
Finally, there are many, many collaborative systems designed to support groups, specifically

to support coordination of group work (that is, for managing dependencies among group tasks).
However, only a few systems have been explicitly aimed at supporting stigmergic coordination.
Musil et al. [50] proposed the concept of a Stigmergic Information System (SIS) architecture
metamodel, though their goal is to develop an architectural model that describes many kinds of
systems rather than to build one. Most systems described as stigmergic appear so far to simply
provide access to the shared work, without specific attention to coordination of the work. For
example, Zhang et al. [77] described a system for allowing collective construction of a conceptual
model.

4 PRELIMINARY EXPERIENCE
We next report our findings from our preliminary experiences deploying the system. Specifically,
to understand how MIDST supports team coordination, we report on an exploratory study that
compared teams who carried out a data-science project using MIDST to teams that used RStudio.
Observation of and informal interviewswith the teams using the two different tools were augmented
with data from a survey (i.e., a mixed-method approach). We emphasize though that the main
contribution of this paper is the framework development and model-driven system design and
development reported above, and that this evaluation is just preliminary, i.e., to indicate if we are
on the right track and to guide further system development.
The participants in the study were data-science graduate students. While there has been little

written about using students to gain insight into industry teams within the data-science context,
experiments with students have been common for decades in the software development domain.
In fact, students were used as subjects in 87% of the software development experiments analyzed
over a representative ten-year period [66]. It is important to note that when using students as
subjects, several factors are typically considered. First, “students vs. professionals” is actually a
misrepresentation of the confounding effect of proficiency, and in fact differences in performance
are much more important than differences in status [68]. Hence, master-level students, many of
whom have several years of industry experience, can often be an appropriate choice for subjects
and act as a proxy for junior-level professionals. Second, comparing across experimental conditions,
using students may reduce variability because all students have about the same level of education,
leading to better statistical characteristics [46]. Finally, while students might not be as experienced
as practicing professionals, they can be viewed as the next generation of professionals and hence
suitable subjects for studies [44, 60].
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Before reporting on these findings about coordination, we note that initial results from a study
of MIDST [61] suggest that MIDST improves the modularity of an analysis, as well as the maintain-
ability of an analysis by making it easier to share and to understand the analysis code. Improved
modularity and maintainability lead us to believe that MIDST improves combinability (due to
improved modular increments) and visibility (since improved maintainability was due in part to
improved accessibility and visibility of node inputs and outputs), two of the intermediate variables
in our conceptual model (Figure 1).

4.1 Methodology
231 students in eleven sections of a graduate-level introductory data-science class participated in
this evaluation. Nine of the eleven sections were face-to-face and two were distance-based. Students
from two of the face-to-face sections and one of the distance-based sections used MIDST, a total of
72 students. The students who did not use MIDST used RStudio exclusively and served as a control
group (i.e., a quasi-experimental design). Students enrolled in a section of the course without any
knowledge of which sections would use MIDST and which would use only RStudio.
Students had similar experience and backgrounds across all sections. Specifically, most of the

students were graduate information system students. However, each section also included students
from other graduate programs, mainly business administration and public policy. All students
received the same data-science and RStudio instruction and had the same project requirements,
working in teams of 3 to 6 people on a semester-long data-analysis project. All students received
instruction on the importance of modularity in a team project and some feedback on creating a
good task division. Students who used MIDST were also given instruction on how to use MIDST
prior to the start of the project and used it for some individual assignments.
The study protocol was approved by the University’s IRB. Students were not compensated for

their participation in the study. Use of MIDST in the MIDST sections was only mandatory for
submitting assignments; students could and some did use RStudio for development, as discussed
below. Students were informed that MIDST was part of a study and had the option to request that
their data not be used; none exercised that option.

4.2 Usage Data
In fall 2018, the class used an earlier version of MIDST. The sections that used MIDST created a total
of 10 team projects across 2 sections. The average team size was 5 students. The average number of
nodes per team project was 29.4; the average number of R nodes was 10.6. RStudio does not require
creating a modular analysis, and hence, there are no comparable counts for the control group.
In spring 2019, an online class used the current version of the tool. The class created a total of

6 team projects. The average team size was 3.2 students. The average number of nodes per team
project was 38.7; the average number of R nodes was 11.8.
We expect that MIDST will be much more useful for the distance students, who have fewer

opportunities for interaction and coordination. However, it was very useful in debugging the
system to be able to observe and interact with students to understand their problems and to provide
support, hence our decision to first use the system with students in face-to-face sections.

4.3 Findings from Observations
We first report findings from observations of and informal interviews with student team members
while they were working on the team project. The observations were done by one of the authors
siting in on classes and observing the students working together in small groups, either face-to-face
or in a synchronous video conference, while taking notes. This observer was not an instructor for
the class. During the observations, the observer would occasionally ask the students to explain
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what they were doing or what problems they perceived. Analysis of the observations are integrated
across the two semesters. As appropriate, we note if an example was within the face-to-face or
distance-based course.
In reviewing the observations, several themes emerged. First, the project required interaction

among the students to build a common understanding of the task. Students in the face-to-face class
were able to mobilize all the communicative resources of face-to-face interaction to negotiate a
shared understanding of what is to be done. To communicate with each other, students generally
met physically to discuss the main point of their project. During their meeting, students were
observed trying to make sure that everyone in the group understood all parts of the project. Students
tried to help others understand their ideas, and at the same time, felt free to ask for help from other
team members. Students in the distance section faced more of a challenge, but did have some more
limited opportunities for discussion. In both cases, synchronous discussions were augmented with
other interactions, e.g., email or a chat group.
In both cases, it was useful to have shared notes to ensure that all members had a common

understanding. This was especially important when some members were absent from a discussion.
MIDST complemented such unstructured notes by enabling team members to share their under-
standing of the work to be done, e.g., by giving a meaningful title and a detailed description for
each node. As one student said “we note our comments in a shared document or through a group
discussion where we describe our fixed goal and the different tasks. However node title and the
brief description give me a quick access to the updated goal”.
Beyond easier code sharing, MIDST requires each node to have defined task inputs (which can

be the output of another team member’s node) and output (which can be the input for another
team member’s node). Having well-defined inputs and outputs helped team members coordinate
their work without discussion. As one student said, “Sometimes we don’t ask for resources we just
wait for it by looking directly to the needed input from the network.” The tool also provides access
to the shared code, which also supports coordination. As one student said, “I don’t find problems
or issues in coordinating the work. I generally go to the code of each resource and look if it is
similar to my expectation. Sometime when the code is clear and well commented, I go directly for
modifying it (sometime after permission).”
The combination of defined inputs and outputs and node ownership also made explicit coordi-

nation easier when it was needed. For example, if students who were waiting for an input from
another node’s output found that the result was different from what was expected, they knew who
to talk to. Ownership suggests that any modification to the node should be discussed with and
validated by the owner. As one said, “If they want to improve one task, they should first ask me
and then they go to the code and update it.”
The notification system was also seen as helpful in supporting coordination activities. Indeed,

students expressed a desire for additional notifications indicating the creation of a new node, the
deletion or the update of existing one or the presence of another student in the node to help tracking
activities related to their own tasks. For instance, one complained, “I’m not notified about other
team member working in the same node and delete it”.
In contrast, students using RStudio lacked a shared virtual workplace, which limited access to

information about the project. They used Trello to track tasks and task status. To avoid problems,
they tried usually to finish their work on time and post in Trello the status of the work so they knew
when they could ask for the output of another student’s task in case of dependencies. However,
sharing the code was a challenge for these teams. Some teams were observed using Google Docs.
But since the code was not easily shared, the team members typically preferred to divide the project
in subtasks and work in subgroups of 2 or 3 people, where members in a subgroup can meet
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frequently and work on tasks that are independent from the other groups within the team. This
approach minimizes the need for coordination but potentially increases problems integrating code.
Overall, the majority (but not all) of the teams using MIDST succeeded in modularizing the

project and creating the network flow according to their understanding. MIDST seemed easy-to-use
as a way to understand, explain and share team members’ project status. All teams agreed that
the tool helped them to understand and track project status as the project progressed. A counter-
example is provided by one team in the distance course who encountered significant team issues
(indeed, the team actually disbanded just before the end of the project). While there were likely
many causes for the team’s failure to work well together, one interesting aspect of how they worked
was that one of the team members did not do his work within MIDST, but rather used RStudio.
When that person tried to integrate their work with the others at the last minute (i.e., a “code
dump”), there was significant confusion about what was done and who was doing which analysis. A
further complication is that the team member used some advanced techniques that the other team
members did not know how to interpret (or even if the results were useful). So even though there
was significant effort expended by each team member, there was frustration that the individual
work did not contribute to the group effort. We believe that had all the team members used MIDST
more proactively during the project, the structure of the nodes (including inputs and outputs)
would have helped to structure their discussion about what was being done, perhaps avoiding these
problems.

4.4 Survey Analysis
To augment our findings from the observation, we deployed a survey that included quantitative
and open-ended questions about visibility and overall coordination when using MIDST or RStudio.
The survey was deployed near the end of the class. There were 197 responses to the survey (an 85%
response rate). 61 of those students were in the MIDST condition (also an 85% response rate). The
data collected served to verify the reliability of the quantitative scales. However, we note that the
survey was completed by students who used an earlier, still somewhat buggy version of the system
and by only a handful of distance students, those we believe to have a larger need for the system.
And even there, not all of the team used MIDST as intended, further compromising the results. We
therefore focus here on the qualitative analysis.

The qualitative responses were analyzed by one of the authors, who read through them to look for
commonalities in the responses. Four key themes emerged. On the one hand, students appreciated
MIDST’s ability to help them break up the work and stay coordinated within their team. On the
other hand, they also often commented on bugs, usability and performance issues. One student
comment was typical “Though a thoughtful idea, it needs polishing”.

Below we list examples of student comments for the four key themes identified.

(1) MIDST good for sharing/dividing work:
• “It is a very good tool for shared projects”
• “Task assignment was easy”
• “MIDST allowed us to divide the work and track the progress of the project”
• “We could all work in it simultaneously without asking each other to share the code with
us”

• “Different versions of code can be made available”
• “Module wise distribution, easy sharing”
• “Very good for assigning tasks and group coordination”

(2) MIDST good for visibility/tracking:
• “We can track team members work”
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• “Easily see the progress”
• “It can track each member’s progress”

(3) MIDST bugs/issues:
• “The basic functions (like ggplot) stop working abruptly”
• “Running the code takes a lot of time”
• “The session timeouts for big networks”
• “Created a lot of errors on the codes which were working well on R studio”

(4) MIDST ease-of-use issues:
• “Took us a little time to learn the working”
• “Identifying and solving errors became extremely challenging for our team”
• “The time taken to understand it completely”
• “We didn’t have any prior experience working with MIDST, so it took some time in getting
familiar with MIDST”

In summary, while still preliminary, the evidence from the initial use of the MIDST system
suggests that it is supporting better modularity and combinability of code and improving visibility
and mobility of work products, which we have argued are necessary preconditions for stigmergic
coordination.

5 CONCLUSION
Our goal in this project is to better support coordination in data-science teams by transferring
findings about coordination from FLOSS development. Specifically, we sought to enable stigmergic
coordination, meaning coordination that is carried out through a sharedwork product.We noted that
simply reusing systems (e.g., using git and GitHub to share R scripts) was not entirely satisfactory
due to mismatches due to differences in work products and practices. To understand what support
was missing, we developed a conceptual framework for the affordance needed to support stigmergic
coordination, specifically, visibility of work, use of clear genres of work products and combinability
of contributions. We then sought to implement those affordances for data science. While the
success of the final system in supporting stigmergic coordination remains to be proven, our initial
experience suggests that it does implement the desired affordances and seems to be useful.

5.1 Future Empirical Studies
At present, the evaluation presented in this paper is only indicative that the tool is useful and that it
supports stigmergic coordination. We plan to continue using the tool with future classes to gather a
larger evidence base with which to test the conceptual framework. The quantitative study results at
least established the reliability of the scales, which is an important precondition for future research
using them. We expect to see that teams using MIDST will be able to coordinate at least some of
their work stigmergically, thus expending less work on explicit coordination. Failure to achieve
easier coordination would falsify the framework proposed here and suggest the need to explore
additional affordances. We would also like to use the tool with teams beyond the classroom. For
example, we could use the tool with teams that are competing in data-science challenges, such as
Kaggle. Such studies could establish how well the system scales to large analyses and teams.

5.2 Future System Features
While the system is usable and seemingly useful in its current state, we have plans for additional
features. There are a number of small usability improvements, but also four major changes that
touch on the affordances developed above.
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5.2.1 Encapsulation. At present, MIDST implements modularity incompletely, since it does not
enforce encapsulation. All of the code is run in a common R session, which means that a node can
use variables that are created in other nodes. At present, use of global variables is not uncommon,
e.g., when a user develops a script in RStudio and then copies the code intoMIDST nodes. But relying
on global variables is a bad idea, as it creates dependencies between nodes that are not visible in the
overview. In the worst case, results might be dependent on the order in which nodes are executed.
A second problem caused by the lack of encapsulation is that in the current implementation, port
names must be unique in the network, which adds a cognitive overload to creating code nodes.
Adding better encapsulation should be straightforward.

5.2.2 Genres. Second, MIDST currently does not implement genres in a deep way, in part because
the genre repertoire for data science is still emergent. Future work might further develop different
genres of analysis tasks to guide users in structuring their analyses. For example, the system
could have a template for a typical data-cleaning node or regression node. Such a template could
implement a simple default such that the network would be executable immediately (e.g., for a
cleaning node simply copying the input data to the output). It could further suggest what actions are
typically part of such a node, e.g., including necessary regression diagnostics as part of a regression
node.

5.2.3 Tasks vs. Nodes. Third, a major limitation of the current system is the one-to-one mapping
of tasks to code nodes. This approach is suitable for the current application where students are
developing a new analysis, meaning that the work needed is to develop a node. However, it would
likely not be appropriate for a team maintaining an analysis workflow, where a task to be done
might affect multiple nodes. We need to rethink the interface and system functionality to represent
tasks that are not connected to a single node.

5.2.4 Code Merging. Finally, as noted above, to avoid conflicting changes that might need to be
manually merged the system currently allows only the owner of a node to push code changes. We
would like to relax this restriction, especially to support tasks that touch multiple nodes, but also
to let users more easily make small changes to others’ nodes. To do so will require implementing a
mechanism to handle multiple change to the same node, including the ability for a user to manually
merge conflicting changes. Such algorithms are already implemented in modern SCCS, so we should
be able to adapt the approaches taken by these systems.

5.3 Reflections on Theory-based System Development
To conclude, we reflect on the process of building conceptual frameworks to guide system develop-
ment. Though CSCW researchers increasingly have the opportunity to study systems that others
have developed, systems development remains an important approach to research. We suggest
that most if not all system development is based on at least an implicit theory of how the system
functionality will affect users. Explicit appeals to theory are less common, though not absent
(e.g., [8, 64]). Sometimes the theory is normative, i.e., a belief that if users are made to behave in
certain ways their performance will improve. For instance, drawing on speech act theory [4, 65], an
early CSCW system, the “Coordinator” [32, 74], sought to improve coordination by requiring that
communication be explicit about the coordination requested, eliminating possible misunderstand-
ings about the sender’s intent. Alternately, as in our case, the theory may be descriptive, e.g., an
observation that certain behaviours are supported by particular kinds of information that a system
might provide.
Building a system provides an opportunity to test whether the theoretical understanding is

correct. Returning to the Coordinator example, while it might have been true that being more
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explicit was more efficient, experience with the system showed that people generally preferred
making indirect requests. Our future plans for MIDST include an empirical test of the system that
will serve as a test of the generality of conceptual framework presented here (it is already supported
by research on FLOSS development).

An advantage of explicitly stating the theory behind a system is that the theory can help clarify
what might be missing in supporting the application domain. In other words, the conceptual
framework provides a set of design requirements for systems that would support stigmergic
coordination. In the data-science case, we noted in particular problems with making the work
contributions of data-science team members more easily combinable than they are as simple R
scripts. The quest to improve combinability led to development of system support and instruction
in creating modular code to make the work more atomic and so easier to combine.

A disadvantage of a theory-based approach is that it can be more time consuming if the theory
being drawn on does not already exist. In our case, time was need to study FLOSS and to develop a
conceptual framework based on that research, rather than simply investigating problems faced by
data-science teams. However, investment in theory building should show benefits in the future
because the theory can be applied to other domains.

As a closing example, we are interested in better supporting stigmergic coordination inWikipedia.
We note that the Wikipedia infrastructure provides direct support for stigmergic coordination: a
logged-in user can set a watchlist, which provides a page with recent changes made to the pages
being watched. Using the watchlist allows an editor to react to changes without any need to be
alerted by or to discuss with the other editor.

In a study of Wikipedia editing [57], we found that the majority of edits to two example articles
were not associated with discussion on the article’s Talk page, suggesting that these changes
were coordinated stigmergically. Specifically, minor fixes and vandalism fixing did not seem to
require discussion. However, we also found that Talk posts did seem to be related to article quality,
suggesting the continued importance of explicit coordination of at least some edits.

Drawing on the theory presented here, we speculate that the issue is that work in Wikipedia is
shared as a set of characters changed in an article and as a result, a change does not necessarily
have regularities of form that give hints to purpose, i.e., a genre. A few types of changes do seem
to constitute genres, e.g., small changes to fix typos or grammar or reversion of vandalism, and
as we noted, these kinds of changes seem to be amenable to stigmergic coordination. However,
it can be difficult to identify the purpose behind more significant changes simply be examining
the characters affected. As a result, the changes by themselves do not always provide a model for
future work in the absence of discussion. It may simply be the case that Wikipedia edits are too
diverse to be easily categorized, but future research might examine both the genres of Wikipedia
edits and ways to embody those genres in tools, which might increase the range of editing that can
be coordinated stigmergically.
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