
eResearch workflows for studying free and open
source software development

James Howison, Andrea Wiggins and Kevin Crowston

School of Information Studies
Syracuse University

{jhowison|awiggins|crowston}@syr.edu

Abstract. This paper proposes a demonstration of eResearch work-
flow tools as a model for the research community studying free and
open source software and its development. For purposes of background
and justification, the paper first introduces eResearch as increasingly
practiced in fields such as astrophysics and biology, then contrasts the
practice of research on free and open source software. After outlining
the suitable public data sources the paper introduces a class of tools
known as scientific workflow frameworks, specifically focusing on one—
Taverna—and introducing its features. To further explain the tool a
complete workflow used for original research on FLOSS is described
and the agenda for the live demonstration is outlined.

1 Background: eResearch

eResearch1 refers to a set of scientific practices and technologies which allow
distributed groups of scientists to bring to bear large shared data sets, com-
putational resources and shared workflows for scientific inquiry. A prototypical
example of such research is the Upper Atmospheric Research Collaboratory
(UARC) [1] and the NSF has produced a series of reports on the topic [2–4].

The hallmarks of eResearch are:

– broad community-level collaborations between distributed scientists
– large-scale broadly available data sets
– shared computational analysis tools and workflows
– replicable research with clear provenance metadata

While the FLOSS research community has taken some steps towards this
goal we have not yet fully embraced this model of inquiry, as highlighted below.
Given that we study highly effective distributed collaborators and collaborative
technologies in the FLOSS community, we have good understanding of the
1 eResearch is also often referred to as Cyberinfrastructure (CI) or eScience and

eSocialScience as well as Scientific Collaboratories. The techniques and organization
described in this paper are applicable across fields of inquiry from the natural
sciences, the social sciences and engineering, therefore this paper adopts the most
general term: eResearch.

2 James Howison, Andrea Wiggins and Kevin Crowston

challenges of, and solutions to such distributed collaborations. It is time to
build further towards it.

Of course, the Software Engineering community has not been entirely absent
from these changes in scientific practice. The PROMISE archive in Software
Engineering collects data sets designed to help create predictor models, such
as understanding which modules are most likely to develop defects [5, 6]. The
PROMISE data includes a well-respected set from NASA and a number of open
source software projects. They do not collect data themselves, but re-publish the
data collected by research teams, together with metadata about the data. The
field has also built many tools, such as those which measure software complexity,
but is yet to make substantive use of workflow technologies which bind data
and analyses together for replicable and extendable scientific inquiry.

1.1 Current FLOSS research practices

Fig. 1. FLOSS researchers often unnecessarily repeat data collection

A series of papers has examined the current research practices in the investi-
gation of FLOSS and its development [7–10]. In general this research has been,
and continues to be, undertaken by separate groups and has involved substan-
tial re-collection of very similar data, usually through spidering Sourceforge or
similar sites. Figure 1, from [8], shows the situation as it was in 2005.

Since then significant progress has been made towards shared datasets held
in what have been called Repositories of Repositories (RoRs) [10]. At the IFIP
2.13 conference in 2007 a workshop was held for research based on public

eResearch workflows for studying free and open source software development 3

databases, including FLOSSMole and CVSanalY. In addition there are the
Notre Dame Sourceforge database dumps, available under an academic sub-
license. These data sources provide an excellent foundation for moving research
in this field towards eResearch. Figure 2 summarizes the impressive and sub-
stantial amount of data available in these RoRs.

Of course not all researchers use these databases, with many continuing to
spider their own data sets, especially outside communities such as IFIP 2.13 and
the Mining Software Repositories workshops. For example at the International
Conference on Information Systems in 2007 there were over five papers using
independently spidered FLOSS data.

Figure 2 also indicates substantial gaps, some of which may be filled if
currently planned work (colored grey) is completed. For example, currently
there is no easy comprehensive source of mailing lists for projects, nor are there
current plans to archive project’s IRC communications or to understand the
structure of dependencies between projects (perhaps by parsing the Debian
package dependancies or examining library usage or code reuse, as studied in
[11]).

Perhaps more significantly there is a myriad of project specific information
discovered by researchers in the course of their research which is not contained
in these databases. For example we do not yet have a way to collect more
qualitative information which may be crucial for interpreting these large data
sources. For example, while FLOSSmetrics is making a great start by manually
validating repository locations, it is clear that projects move between hosting
technologies so it would be useful to know where projects hosted their main
distribution channel or source code repository at different points in its lifetime.
Or whether the project uses a patch submission procedure for its peripheral de-
velopers or simply grants SCM access for all patches? Or which sets of projects
can be analyzed as direct competitors (thus allowing more theoretically mean-
ingfully use of measures such as downloads).

While progress has been made in data availability there is little sharing of
analyses, including components that could provide or calculate important mea-
sures such as project effectiveness. In general researchers have stuck to their
(or perhaps to their graduate students) preferred data manipulation and sta-
tistical analysis tools, conducting in-house development where required. Those
researchers which have made their analysis components and workflows avail-
able (such as [12] and [13]) have merely placed such bespoke tools on project
websites.

This paper proposes the demonstration of tools that can move research on
FLOSS towards increased collaboration and better research results. Figure 3
shows an envisioned workflow repository which allows the discovery, replication,
extension and publication of research workflows, drawing on shared components.

4 James Howison, Andrea Wiggins and Kevin Crowston

Fig. 2. Table showing publicly available FLOSS data for research

Repository for

Research Data1:

FLOSS

mole

Notre

Dame

dumps

FLOSS

metrics &

CVSanalY

Qualoss &

SQO-OSS

Source

kibitzer

Basic data

Confirmed Locations

Memberships

Roles

Mailing lists

Forums

Issue Trackers

IRC logs

Release System

SVN/CVS (counts)

SVN/CVS full

Packages produced

Releases + Dates

Size (LOC, SLOC)

Dependencies

Complexity Metrics

Downloads

Pageviews

User ratings

In Debian

Actual Use3

Sourceforge

Rubyforge

ObjectWeb

Savannah (GNU)

Debian Distribution

Apache Foundation

GNOME meta-project

KDE meta-project

Not Collected Planned (or pilot data only)

Partial (selected sub-collection) Present

Project

Demographics2

Developer

Demographics

1. This table excludes services with data not easily available to researchers. Ohloh, for example, was excluded for this reason. The

Notre Dame dumps require signing a research usage agreement. Sourcekitbizer was included insofar as it provides public access to

data via the FLOSSmole project. FLOSSmetrics includes the earlier sets released by the Libre Software engineering group

(CVSanalY and Debian Counts). Qualoss and SQO-OSS are included together for reasons of space, they are separate projects, but

they are collaborating.

2. Project Demographics include Names, Descriptions, Founding date, Intended Audience, Operating System/environment, License,

Programming language, Maturity/Status and Donors. Projects are often hosted on more than one service, or provide their own

services (such as Trac, SVN etc) Confirmed Locations refers to a human effort to identify the locations actually used by each project.

5. Qualoss intends to implement their measures on 50 projects, currently there are 5 available as pilot data. SQO-OSS works closely

with the KDE meta-project.

Communication

Venues

Software

Venues

Use and

Popularity

3. Actual use as measured, for example, by the Debian Popularity contest which has a voluntary agent installed by some Debian users

that reports frequency of package use.

See Note 5

6. FLOSSmetrics aims to have validated data for 3,000 and currently has partial data available (primarily CVSanalY) for 100 projects.

See Note 6

URLS: FLOSSmole: ossmole.sf.net, Notre Dame: nd.edu/~oss/, FLOSSmetrics: data.flossmetrics.com, CVSanalY:

libresoft.es/Results/CVSAnalY_SF, Qualoss: qualoss.org, SQO-OSS: www.sqo-oss.eu, Sourcekibitzer: sourcekibitzer.org. Thanks to

Jesus González-Barahona, Gregorio Robles and Megan Conklin for assistance in preparing this table.

Sample

Collected
See Note 4

4. Sourcekibitzer samples only Java projects and accepts user contributions (specify project, SCM location, homepage)

eResearch workflows for studying free and open source software development 5

Fig. 3. Envisioned improvements in FLOSS research practices

Repository

Read
Paper

Email
Authors wait

Don't
receive

data

Receive
raw
data

Reproduce
and Enhance

Analysis
Sample

differently
Clean

differently
New

Paper

Read
Paper

tag

Immediately
Download

specific
Workflow

Wiki/Trac
Examine comments and further

developments of workflow components.
Discuss with Authors Reproduce

and Enhance
Analysis

Publish
Paper

Discuss
with

Community

Upload
and
tag

Workflow

Virtuous
Cycle

Repeats

No way to trace from
new to old data and analysis

No virtuous cycle

Without Repository Collaboration

tagged workflow

With Repository Collaboration

Collect Data
Store

Winnow Clean Analyze Statistical
Tables

Graphs/
Tables Papers

Abstract Workflow

2 Scientific workflow tools

There are a set of tools which contribute to solving the issues raised above. This
section introduces two: workflow tools and a community platform for distributed
collaboration around them.

2.1 Workflow tools

Workflow tools support high-level programming which binds together data
sources and analysis steps. Known collectively as “scientific workflow tools”
examples include Taverna2 and Kepler3. The basic principles of the software
are the same: steps in a workflow are undertaken by components which have
multiple input and output ports. Components are linked by joining the output
ports of one to the input ports of another. A workflow made up in such a man-
ner can be represented simply as a flow diagram (See Figure 5, below) and is
usually realized in a single xml file. As with most programming environments,
2 http://taverna.sourceforge.net
3 http://kepler-project.org

http://taverna.sourceforge.net
http://kepler-project.org

6 James Howison, Andrea Wiggins and Kevin Crowston

much of the usefulness of these tools comes from their library of components
which can be local (eg Java or R) or remote (eg SOAP accessed web-services).

The workflow tool to be demonstrated allows the creation of components in
any language, by supporting interfaces such as SOAP or command-line execu-
tion. However the tool does make the use of some technologies easier and more
portable. The high-level composition also promotes modularity in software de-
velopment, believed to lead to easier collaboration and higher quality software.
Though not perfect, see discussion below, iodeally workflow system leaves in-
dividual researchers free to innovate while providing a platform to encapsulate
and share their innovations.

Different scientific communities have begun to coalesce around particular
tools, with Taverna being particular used in the life-sciences, such as biology
and chemistry) and Kepler in sciences such as astro-physics, geology and ecol-
ogy. Recently lightweight platforms have emerged to share workflows (and their
embedded components), drawing on social-networking models like MySpace and
Facebook (these are discussed further below).

Taverna The proposed demonstration will focus on Taverna and will use work-
flows developed to address research questions about FLOSS development. Tav-
erna is instantiated as a stand-alone desktop application, written in Java and
therefore able to run on a wide selection of operating systems including Win-
dows, Mac OS X, Linux and other Unixes operating systems. It is also possible
to run workflows created with Taverna via a ‘headless’ application for server-
based unattended runs.

The application has two main interface modes: one for the design of a work-
flow and one for its execution. The design mode consists of three sections: avail-
able components, the workflow with the selected components and named ports,
and an automatically drawn diagram showing the workflow. Unfortunately con-
nections are made through right-clicking the selected components and not by
drag-and-drop in the graphical depiction, but the process is relatively simple
once learned. Input and output ports are typed through the familiar MIME
typing system. For simplicity and sharing, components can be grouped into
sub-workflows, with a single set of input and output ports.

There are two main classes of components: remote and local. Remote services
can be gathered (‘scavenged’ in Taverna parlance) by entering URLs including
Web Services Description Language (WSDL), for SOAP accessed services, and
a format developed in the biology community called ‘biomoby’. The demon-
stration will utilize remote services created by the authors which present a
WSDL/SOAP interface, run from a Ruby on Rails backend server. It is antici-
pated that the development of remote services in the FLOSS domain will utilize
the WSDL/SOAP combination, since it is standard in many server technologies
(through libraries such as Axis for Java). The application parses the WSDL de-
scription file and makes available multiple components, each with their named
input and output ports.

eResearch workflows for studying free and open source software development 7

Local services include a set of already written components dealing with stan-
dard operations such as file IO, string and list manipulation. It is also possible
to write customized local components in Java and the statistical programming
language R4. Java components are actually written using Beanshell, which is
a scripting language simplification of Java. Data fed into a components Input
ports are available as local variables of the same name and, similarly, output
is automatically taken from variables with the same name as the output port
at the end of a scripts execution. Both R and Beanshell scripts are stored in
the workflow file, and one can parse a workflow file to make these components
available for re-use. R components require an instance of Rserve running either
locally or on a server. Both types of components make available the software
written to work with Java and R respectively (including database access li-
braries such as JDBC). Finally it is possible to execute local command line
applications (such as perl scripts) through the “Execute cmd-line” component
but it is discouraged since it reduces the workflow’s portability, instead those
with previously written components are encouraged to write SOAP interfaces
to them.

Taverna workflows are able to incorporate typical flow of control methods,
such as iteration and conditional branching. Iteration is implicit and based
on the difference between a single input and a list of inputs. Basically, if a
component expecting a single input is presented a list of such inputs, it will
run once for each element in the list, generating a list of each of its outputs.
The results of iteration can be ‘re-gathered’ by a component whose input port
expects a list of inputs, rather than a single input. There are no global variables
and components cannot communicate except via their ports.

Once a workflow has been designed it can be executed, perhaps first provid-
ing any initial workflow inputs (such as a set of FLOSS project names). After
animated step-by-step execution the final outputs of the workflow are displayed.
The Taverna application understands how to display different MIME types,
such as text, xml node trees, PNG and SVG graphics. Final outputs can each
be saved as separate files.

One excellent feature of the software is that during and after the execution
the full set of intermediate input and output variables can be viewed for each
component, excellent for debugging or verification. Further breakpoints can be
set and intermediate inputs manually edited during debugging. There is also
an XML status report for each component available and the full set of status,
intermediate and final results can be saved as an XML file for archiving or
sharing.

Encouragingly the system provides significant metadata facilities. Firstly, a
workflow or component designer can provide metadata, both in unstructured
text descriptions and using scientific ontologies based on RDF. It is therefore
possible to specify that a particular output port will be a string limited to a set
of defined identifiers, in the FLOSS case perhaps a standardized project name.
4 http://r-project.org

http://r-project.org

8 James Howison, Andrea Wiggins and Kevin Crowston

Secondly, the system provides a unique identifier for the workflow and a unique
identifier for each and every workflow execution. These identifiers can therefore
be used in papers to point to a specific workflow and the specific execution
used to produce the results in the paper. The identifiers are called LSIDs (Life
Sciences IDentifiers) and follow an open format, standardized by the Object
Management Group5.

2.2 Collaboration on workflows: MyExperiment.org

The group that developed Taverna has also developed a social networking site
called MyExperiment to encourage sharing of workflows. The site allows the cre-
ation of profiles for individual researchers and the upload of Taverna workflows
with a choice of licenses available (including the encouraged Creative Commons
share-alike license). Users can then tag the workflows with metadata for dis-
covery, can comment on the workflow and if the workflow is later used as a
sub-workflow in another uploaded workflow the workflow receives a citation.
Figure 4 shows the basic features of MyExperiment.org. The biology research
focus of the community is clear from the tags, but it possible to create Groups
of researchers and to restrict one’s searches to that Group; it is anticipated that
a FLOSS research group will have formed by the time of the demonstration. If
the Group segmentation is not sufficient the entire MyExperiment.org applica-
tion is open source and could be adapted specifically for the FLOSS research
community.

3 Demonstration Proposal

The demonstration proposed for the IFIP 2.13 conference in 2008 can be sized
to fit an available time-slot and interest, but it would include the following
elements:

– introduction to available FLOSS datasets
– introduction to scientific workflow concepts
– demonstration of the Taverna workflows in action
– live building of a simple workflow, using SOAP access to FLOSSMole and

local components
– Demonstration of publishing that simple workflow on MyExperiment.org
– Discussion of how one would reference a workflow, and a specific workflow

run, in a publication

Attendees would be provided with links to materials, including the sample
workflows, so that they can work through the examples, and utilize the work-
flows, in their own research. Attendees will learn enough to be able to further
explore the tools on their own and will be introduced to the library of existing
components which will interface with existing FLOSS datasets.
5 http://www.omg.org/cgi-bin/doc?dtc/04-05-01

http://www.omg.org/cgi-bin/doc?dtc/04-05-01

eResearch workflows for studying free and open source software development 9

Fig. 4. Screenshot from MyExperiment.org showing basic features: profiles, workflows
and tags

3.1 Example workflows for demonstration

The authors have received NSF funding (Grant Number 0708767) to fur-
ther their FLOSSmole project and are working to replicate—with Taverna
workflows—a small number of studies from the research literature on FLOSS.
These studies draw on large data sets (FLOSSMole, CVSanalY and the Notre
Dame dumps) and will assist in the prototyping of SOAP access components
and a library of reusable local components for the use of the research commu-
nity. The studies currently candidates for replication include [12–16].

It is anticipated that these workflows will have been demonstrated at the
NSF funded workshop “Free/Open Source Software Repositories and Research
Infrastructures” hosted at UC Irvine in February 2008, so while they are not
available at the time of this submission, they will be available for demonstration
at the IFIP 2.13 conference in September 2008. What is available now, and

10 James Howison, Andrea Wiggins and Kevin Crowston

presented below, is a workflow prepared for a companion scientific paper [17],
also submitted to the 2008 IFIP 2.13 conference.

The workflow draws on FLOSSmole data to produce a time-series graph
of social network centralization through a project’s lifetime, based on evidence
from project communications. Figure 5 shows the workflow graphic saved di-
rectly from Taverna. Workflow inputs are boxed at the top, and the final graph-
ical output boxed at the bottom. There are three types of components used:

Fig. 5. An example Taverna workflow for analysis of FLOSS communications social
networks over time, saved directly from the Taverna interface

1. WebServices accessed via SOAP (GetPeriods, EventsForProjectInPeriod,
MatrixBuilderR) (colored green on-screen)

2. Rshell components (CalculateWeight, CalculateCentralization and Cental-
izationPlot) (colored beige onscreen)

3. Local components used for spliting xml results and managing iteration (col-
ored purple on-screen)6

6 The awkwardness of the splitting, de-listing and re-listing elements in this diagram
reflect our learning curve with Taverna, future work will rationalize these steps.

eResearch workflows for studying free and open source software development 11

The basic flow is as follows. The user specifies a project and a time-period
(say 1999 to 2006) and the workflow uses GeneratePeriods to get a set of peri-
ods7 Then for each period the events (dated from-to relations in project commu-
nications) are accessed from FLOSSmole by EventsForProjectInPeriod, which
returns an XML document which is split to individual events. Then the ele-
ments of each event are passed to CalulateWeight which performs a recency
based exponential decay (so that less recent events are lower weighted) and
the results passed to MatrixBuilderR. This component expects a list (from-to-
weight) and so ‘re-gathers’ the individual events for the period, returning an
aggregated socio-matrix in a format that the sna library for R can understand.
This matrix is then passed to R running in a local Rserve instance to calcu-
late network centralization and the result passed, along with the appropriate
end-date for the period to CentralizationPlot. This also expects list inputs and
so re-gathers all the periods and produces a time-series graph and summary
measures as shown in Figure 6. The workflow and the workflow execution xml
files that produced this diagram are available in the FLOSSmole SVN8. The
workflow execution run contains all the intermediate inputs and outputs and
records of the number of iterations at each level.

Fig. 6. A sample output from the workflow above

The only component that directly accesses the FLOSSmole database is
EventsForProjectInPeriod (this means that GetPeriods and MatrixBuilderR
could have been implemented as local Beanshell componants, but we already
had logic for these in our previously written Rails application, so simply
wrapped them for SOAP access).

Preparing this workflow further convinced us of the usefulness of the work-
flow approach and of moving as much logic into it as possible. Firstly the avail-
ability of the inputs and outputs is ideal for debugging. Secondly the important
7 GeneratePeriods can create overlapping periods when extendBackBy is set above

zero. This is used for a sliding window, and interacts with the recency-based weight-
ing to reduce double counting. See [17] for details.

8 http://ossmole.svn.sf.net/viewvc/ossmole/taverna-workflows/sna/

http://ossmole.svn.sf.net/viewvc/ossmole/taverna-workflows/sna/

12 James Howison, Andrea Wiggins and Kevin Crowston

step of entity resolution, by which we mean deciding which identifiers (email ad-
dresses, realnames, sourceforge user ids) belong to the same person, currently
occurs on the server as the data is imported to FLOSSmole’s FLOSSEvent-
Brower database. This hides the logic from the workflow and limits future users
to the choices made on the server. Ideally the server would provide as raw data
as possible and steps like entity resolution would be available as sub-workflows,
so that others can alter the choices made and see the effect. Such sub-workflows
are an excellent example of components that could be available in a library for
community use.

4 Tasks ahead

The combination of growing large-scale public data sets and workflow tools
such as Taverna and MyExperiment.org present a great opportunity for the
eResearch on FLOSS and its development. There are, of course, issues to be
worked through, including:

– building common interfaces to public datasets (eg SOAP/REST access)
– creating ontologies for naming parts of datasets, such as project and devel-

oper identifiers, venue types (user communication venues (lists, forums) vs
developer venues (lists, forums, trackers)), while recognizing that these can
change over time. RDF data formats will assist here.

– incorporating metadata data gathered about projects, such as their patch
submission procedures and the location of their repositories at different times.

– incorporating specifically social science data, such as content analytic schemas
and marked up data [18, 19], as well as interview recordings or transcripts and
participant observation field notes (subject, of course, to informed consent
and appropriate human subjects review).

Finally if this effort is to prove successful there must be encouragement by
the community for researchers to get involved. In the first instance this means
ensuring easy access to data sets as well as demonstrations such as the one
proposed here. However the onus also falls on editors and reviewers to shape
the research community’s practices. For example, in order to discourage wasted
effort and inconsistent data collection efforts, where appropriate and where the
data is already publicly available, editors and reviewers should insist that the
analysis in papers submissions be based on that data, even if it means re-running
the analysis. Further reviewers should feel empowered to request the complete
workflow, including statistical analysis, as part of their reviewing process.

These suggestions are, it must be made clear, separate to the question de-
bated at last year’s IFIP 2.13 conference, of whether authors should, as a con-
dition of publishing on FLOSS topics, be required to make their collected data
and analyses publicly available—workflows provided to reviewers could be done
so with the expectation of confidentiality.

eResearch workflows for studying free and open source software development 13

At the time this paper was prepared there were two workshops planned for
February 2008 which will have advanced both data and collaboration in this
domain. “Research Friendly” to be held Europe by the FLOSSmetrics project
at FOSSEM, and the “NSF FOSS Repository and Research Infrastructures
Workshop” hosted at UC Irvine. The presentation will draw on the outcomes
of these workshops.

5 Conclusion

There are clearly trade-offs in standardizing on analysis technologies. For one
there is a substantial store of experience and skills with individual researcher’s
tools of choice. Many research groups have talented programmers on staff who
have built innovative in-house systems which work well for the problems that
group has addressed. Standardization promotes collaboration but also asks re-
search groups to move towards the standard tools, in order to benefit from the
work of the collaborators. We have enjoyed working with Taverna, but encour-
age other FLOSS researchers to share their experience with other tools. One of
the benefits of the modularity encouraged by the tools is that components can
be relatively easily moved between software packages.

While standardization has some costs, the benefits of the collaboration it
supports aren’t limited to working with other research groups. In fact many
groups have also had the experience of losing their main programmer, perhaps
to graduation, and facing a lack of knowledge about their own systems. Indeed
while it is commonly acknowledged that any form of collaboration between peo-
ple can benefit from standardization, it is also true that programmers returning
to their own work months later can also benefit from standardized approaches,
enabling one to quickly build on one’s own earlier work (as well as remember
the exact choices one made).

eResearch presents a significant opportunity for research on FLOSS develop-
ment. This paper outlines what is meant by a call for a move towards eResearch
techniques and describes tools and ongoing work to kickstart that process. Fi-
nally it proposes a demonstration session for the IFIP 2.13 conference in 2008,
which should make these ideas and tools concrete to the FLOSS research com-
munity.

References

[1] G. M. Olson, D. E. Atkins, R. Clauer, T.A. Finholt, F. Jahanian, T. I. Killeen, A. Prakash,
and T. Weymouth. The upper atmospheric research collaboratory (uarc). ACM Interactions,
5(4):48–55, 1998.

[2] Daniel Atkins. Report of the National Science Foundation blue-ribbon advisory panel on
cyberinfrastructure, 2003. URL http://www.nsf.gov/od/oci/reports/toc.jsp.

[3] F. Berman and H. Brady. Final report: NSF SBE-CISE workshop on cyberinfrastructure and
the social sciences, 2005. Available at www.sdsc.edu/sbe/.

[4] NSF Cyberinfrastructure Council. Cyberinfrastructure vision for 21st century discovery, 2007.
URL http://netstats.ucar.edu/cyrdas/report/cyrdas_report_final.pdf. NSF Report 0728.

http://www.nsf.gov/od/oci/reports/toc.jsp
http://netstats.ucar.edu/cyrdas/report/cyrdas_report_final.pdf

14 James Howison, Andrea Wiggins and Kevin Crowston

[5] Bojan Cukic. The promise of public software engineering data repositories. IEEE Software,
22(6):20–22, 2005.

[6] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software Engineering
Databases. School of Information Technology and Engineering, University of Ottawa, Canada,
2005. URL http://promise.site.uottawa.ca/SERepository.

[7] Megan Conklin, James Howison, and Kevin Crowston. Collaboration using ossmole: A repos-
itory of floss data and analyses. In In Proceedings of the Workshop on Mining Software
Repositories (MSR 2005) at the 27th International Conference on Software Engineering
(ICSE2005), St. Louis, Missouri, USA., 2005.

[8] James Howison, Megan Conklin, and Kevin Crowston. Flossmole: A collaborative repository
for floss research data and analysis. International Journal of Information Technology and
Web Engineering, 1(3):17–26, 2006.

[9] James Howison, Megan Conklin, and Kevin Crowston. OSSmole: A collaborative repository
for FLOSS research data and analyses. In Proc. of 1st International Conference on Open
Source Software, Genova, Italy, 2005. URL http://oss2005.case.unibz.it/.

[10] Ionannis Antoniades, Ioannis Samoladas, Sulayman K. Sowe, Gregorio Robles, Stefan Koch,
Ksenia Fraczek, and Anis Hadzisalihovic. D1.1 study of available tools. EU Framework de-
liverable, FLOSSmetrics, 2007. URL http://flossmetrics.org/sections/deliverables/docs/
deliverables/WP1/D1.1-Study_of_Available_Tools.pdf.

[11] Audris Mockus. Large-scale code reuse in open source software. In FLOSS ’07: Proceedings
of the First International Workshop on Emerging Trends in FLOSS Research and Devel-
opment (FLOSS’07: ICSE Workshops 2007), page 7, Washington, DC, USA, 2007. IEEE
Computer Society. ISBN 0-7695-2961-5. doi: http://dx.doi.org/10.1109/FLOSS.2007.10.

[12] James Howison, Keisuke Inoue, and Kevin Crowston. Social dynamics of free and open source
team communications. In E. Damiani, B. Fitzgerald, W. Scacchi, and M. Scotto, editors,
Proceedings of the IFIP 2nd International Conference on Open Source Software (Lake
Como, Italy), volume 203/2006 of IFIP International Federation for Information Processing,
pages 319–330. Springer, Boston, USA, June 2006. URL http://floss.syr.edu/publications/
howison_dynamic_sna_intoss_ifip_short.pdf.

[13] G. Robles, J. J. Amor, J. M. González-Barahona, and I. Herraiz. Evolution and growth in
large libre software projects. In The 8th International Workshop on Principles of Software
Evolution, Lisbon, Portugal, 2005.

[14] Scott Christley and Greg Madey. Global and temporal analysis of social positions at source-
forge.net. In The Third International Conference on Open Source Systems (OSS 2007),
IFIP WG 2.13, Limerick, Ireland, June 2007.

[15] Megan Conklin. Do the rich get richer? The impact of power laws on open source development
projects. In Proceedings of Open Source 2004 (OSCON), Portland, Oregon, 2004. URL
http://www.elon.edu/facstaff/mconklin/pubs/oscon_revised.pdf.

[16] Charles M. Schweik and Robert English. Tragedy of the foss commons? investigating the
institutional designs of free/libre and open source software projects. First Monday, 12(2),
2007. URL http://firstmonday.org/issues/issue12_2/schweik/index.html.

[17] Andrea Wiggins, James Howison, and Kevin Crowston. Social dynamics of floss team commu-
nication across channels. In Submitted to Fourth International Conference on Open Source
Software (IFIP 2.13), 2008.

[18] Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. Community, joining, and special-
ization in open source software innovation: a case study. Research Policy, 32(7):1217–1241,
2003. URL http://ideas.repec.org/a/eee/respol/v32y2003i7p1217-1241.html.

[19] Robert Heckman, Kevin Crowston, U. Yeliz Eseryel, James Howison, Eileen Allen, and Qing Li.
Emergent decision-making practices in free/libre open source software (FLOSS) development
teams. In Joseph Feller, Brian Fitzgerald, Walt Scacchi, and A Sillitti, editors, Open Source
Development, Adoption and Innovation, volume 234 of IFIP International Federation for
Information Processing, pages 71–84. Springer, Boston, USA, 2007.

http://promise.site.uottawa.ca/SERepository
http://oss2005.case.unibz.it/
http://flossmetrics.org/sections/deliverables/docs/deliverables/WP1/D1.1-Study_of_Available_Tools.pdf
http://flossmetrics.org/sections/deliverables/docs/deliverables/WP1/D1.1-Study_of_Available_Tools.pdf
http://floss.syr.edu/publications/howison_dynamic_sna_intoss_ifip_short.pdf
http://floss.syr.edu/publications/howison_dynamic_sna_intoss_ifip_short.pdf
http://www.elon.edu/facstaff/mconklin/pubs/oscon_revised.pdf
http://firstmonday.org/issues/issue12_2/schweik/index.html
http://ideas.repec.org/a/eee/respol/v32y2003i7p1217-1241.html

	eResearch workflows for studying free and open source software development
	James Howison, Andrea Wiggins and Kevin Crowston

