
Stigmergy and Implicit Coordination in Software
Development

James Howison
University of Texas at Austin
jhowison@ischool.utexas.edu

Carsten Østerlund
Syracuse University
costerlu@syr.edu

Kevin Crowston
Syracuse University
crowston@syr.edu

Francesco Bolici
Universitá degli Studi di Cassino
francesco.bolici@eco.unicas.it

ABSTRACT
How do distributed, loosely connected software developers
coordinate? That is, how do they understand and manage the
dependencies between their work and the work of others? We
contribute to this important and frequently studied area by
developing a theoretical perspective that brings together in-
sights from implicit and stigmergic perspectives on coordina-
tion. We illustrate our theoretical contribution with analysis
of “lore” on best practices for open, distributed software col-
laboration.

Author Keywords
Coordination; Stigmergy; Sociomateriality

ACM Classification Keywords
H.5.3 Group and Organization Interfaces:
Computer-supported Cooperative Work

INTRODUCTION
How do distributed, loosely connected software developers
coordinate, that is, how do they understand and manage the
dependencies between their work and the work of others?
Prior answers to this important question can be broken into
three broad categories of coordination: explicit, implicit and
stigmergic.

Explicit coordination mechanisms are those where the work
of coordinating (the articulation work) is performed as sepa-
rate, identifiable work. Most clearly this work involves mak-
ing specific plans, such as meeting early to decide a work
breakdown and standard, documented APIs, and executing
these plans. In addition, as empirical studies consistently find,
planning alone is insufficient and is augmented by mutual
adjustment, that is, coordinated work is also accomplished
through discussion: informal sharing and talking as the work
unfolds [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSCW’12, February 11–15, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

In many case though, co-workers can be observed to work
without needing explicit discussion. The implicit coordina-
tion perspective explains these situations by arguing that well-
developed shared mental models enables people to determine
what needs to be done even in the absent of explicit commu-
nication and coordination [5, 11]. In other words, people’s
background knowledge and mental models allows them to
engage in interdependent activities without separate coordi-
nation mechanisms or explicit communication.

A third line of work has posed an alternative explanation for
coordination with little communication by focusing on how
people use the outcome of their shared work as coordina-
tion devises. This work draws on the biological process of
stimergy, “a class of mechanisms that mediate animal-animal
interactions” [6]. As Heylighen writes, “A process is stigmer-
gic if the work (‘ergon’ in Greek) done by one agent provides
a stimulus (‘stigma’) that entices other agents to continue the
job.” [7]. Such an approach suggests that the shared mate-
rial itself can be a coordination mechanism, without recourse
to separate coordinative activities, either explicit or implicit.
Continuing a line of work in CSCW, Christensen observed
stimergic coordination amongst building architectures, argu-
ing that their work is “partly coordinated directly through the
material field of work” [3].

STATEMENT OF CURRENT WORK
While the concepts of implicit coordination and stimergy
both offer plausible explanations to how people coordination
works without explicit coordination mechanisms, they dont
take each other’s contribution into account. Thus, the litera-
ture maintains a dichotomy between a mental and social ex-
planation on one side and a material argument on the other.
Such a dichotomy has been called into question by the re-
cent debate on sociomateriality [9, 10]. Our current work
strives to bring these perspectives into confluence by asking:
How do the socio-cognitive and the material work together in
the interpretative process through which participants come to
know what to do next? How do they do that in a way that is
coordinated with others?

To work is to engage in practice, an ongoing historical pro-
cess in which peoples doings are caught up and responsive
to what others are doing. Taking inspiration from Smith [13]

and Bakhtin [1], we suggest that a work input is rarely com-
pletely original; it is always an answer (i.e., a response) to
work that precedes it, and is therefore always conditioned by,
and in turn qualifies, the prior activities. What the engineer
or bricklayer does when facing somebodys work is respon-
sive and partially determined by what has been going on up
till now. Every next act picks up on what has been done and
projects it forward into the future. However, the ability to
read what has been done as a stimuli is also important: a
novice and expert may reach very different conclusions from
the same prior work.

This perspective seems particularly useful in understanding
long-running open software projects whose end-point is dis-
covered rather than pre-determined. In software develop-
ment, we note that the codebase is part of a practice; it can
be useful to think of a code contribution as a turn in a conver-
sation. A contribution addresses earlier contributions but at
the same time points towards a response. When a coder posts
new code to the repository the code is always conditioned by,
and in turn qualifies, the prior activities. It picks up on what
has been done and projects it forward into the future. The
new code thus works as both a model of work done and more
importantly a model for future work. It stands as a question
posted in a conversation waiting to be answered.

However, a developer, prompted in a stigmergic way by the
appearance of work, actively interprets and adjusts. They do
so by not only understanding the current work of others, but
by projecting it forward. They do this drawing heavily on
their experience and knowledge of past patterns (as work on
implicit coordination suggests). We argue that they project
forward not only the path of work of others, but also their own
likely path and account for the intertwining of those branch-
ing paths. This complex branching projection, of course, is
subject to bounded rationality, but can be updated and refined
as the actual course of others work is revealed.

This unified perspective allows us to highlight three material
characteristics of collaborative work systems: transparency,
provenance and experimentability. Transparency, of course,
is key to both the stigmergic prompting of the attention of
others and to the communication of the raw substance to be
interpreted (akin to Kellog et al.s idea of “display” and “rep-
resent” [8]); making software work appropriately transparent
has been a focus of developer-support systems [12]. Prove-
nancemeaning the history and sourceof shared project is a
related but extended characteristic: source code control sys-
tems not only communicate a new piece of work, they make
available the entire current state of the project as well as its
history. Provenance systems highlight the work paths of in-
dividuals (even if just by sorting patches by committer ids)
and thus create very fertile ground for projects; just as the
likely future path of an arrow can be judged better from a
video than a photograph. The importance of this character-
istic was noted in forthcoming work on Github by Dabbish
et al. [4]. Experimentability means that the current work can
be placed not only in the context of an evolving codebase
but allows a reacting participant to experiment with possible
next moves before making them available to others, discover-

ing interdependencies and framing their contribution in a way
that accounts for their projections of others work paths. As
illustrative evidence for our perspective we analyze existing
“lore” on appropriate socio-material work practices. “Dont
break the build,” for instance, mean that contributions ought
not to leave the shared work object in a non-functional state.
Such contributions would interrupt the process of interpre-
tation and projection: just as a fractured, stuttering video
is more difficult to interpret. The sayings “Dont ‘go dark’;
Avoid codebombs” highlight that contributions ought to be a
certain size and ought to be contributed at an appropriate fre-
quency. The concern primarily is to avoid codebombs, large
patches that are hard for others to interpret (let alone test), un-
dermining transparency, provenance and experimentability.
“Going dark” refers to withdrawing from transparent work for
long periods of time, usually resulting in disconnected, larger
patches. The resulting recommendations encourage partici-
pants to produce contributions that accord with our theoriz-
ing, above: they are maximally interpretable and come in a
flow of work that aids projections and allows the rapid and
frequent refining of those interrelated projections. Finally we
analyze a disagreement between those who argue that git, as a
distributed SCCS, will promote better practices (more atomic,
more provenance, more frequent), and those who argue it
will promote worse practices (less provenance due to git re-
base command, more “going dark”). The discussion makes
the value of understanding the process as socio-material: the
technology has its effect only as enacted in shared practices.

BIOGRAPHIES
James Howison is an Assistant Professor in the Information
School of the University of Texas at Austin, having earned his
Ph.D. in Information Science and Technology from Syracuse
University in 2009. He researches the organization of work
on information technologies, where he has focused on free
and open source software and software work in science.

Carsten Østerlund is an Associate Professor at the School
of Information Studies at Syracuse University. He earned his
Ph.D. in Management from Massachusetts Institute of Tech-
nology in 2003. His research explores the organization, cre-
ation, and use of documents in distributed work environments
where people’s daily practices are characterized by high mo-
bility.

Kevin Crowston joined the School of Information Studies at
Syracuse University in 1996. He received his Ph.D. in In-
formation Technologies from the Sloan School of Manage-
ment, Massachusetts Institute of Technology (MIT) in 1991.
His current research focuses on new ways of organizing made
possible by the extensive use of information technology.

Francesco Bolici is Assistant Professor in Organization Stud-
ies at Universitá degli Studi di Cassino (Italy). He earned
his Ph.D. in Management of Information Systems from Luiss
Guido Carli. His research investigates the network organiza-
tional structures emerging from the use of information tech-
nology and the consequent coordination mechanisms adopted
by the actors in a digital environment.

REFERENCES
1. Bakhtin, M. The problem of speech genres. Speech

genres and other late essays (1986), 60–102.
2. Cataldo, M., Herbsleb, J. D., and Carley, K. M.

Socio-technical congruence: a framework for assessing
the impact of technical and work dependencies on
software development productivity. In Proceedings of
the Second ACM-IEEE international symposium on
Empirical software engineering and measurement
(ESEM ’08) (Kaiserslautern, Germany, 2008).

3. Christensen, L. The logic of practices of stigmergy:
representational artifacts in architectural design. In
CSCW ’08: Proceedings of the ACM 2008 conference
on Computer supported cooperative work (2008),
ACM–568.

4. Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. Social
coding in github: Transparency and collaboration in an
open software repository. In CSCW (2012).

5. Espinosa, A., Lerch, J., and Kraut, R. E. Explicit vs.
implicit coordination mechanisms and task
dependencies: One size does not fit all. In Team
cognition: Process and performance at the inter- and
intra-individual level, E. Salas and S. M. Fiore, Eds.
APA, Washington, D.C., 2004.

6. Grassé, P. P. La reconstrution du nid et les coordinations
inter-individuelles chez bellicositermes natalensis et
cubitermes sp. la théorie de la stigmergie: Essai
d’interprétation du comportament de termites
constructeurs. Insectes Sociaux, 6 (1959), 81.

7. Heylighen, F. Why is Open Access Development so
Successful? Stigmergic organization and the economics
of information. 2007.

8. Kellogg, K., Orlikowski, W., and Yates, J. Life in the
trading zone: Structuring coordination across
boundaries in postbureaucratic organizations.
Organization Science 17, 1 (2006), 22–44.

9. Leonardi, P., and Barley, S. Materiality and change:
Challenges to building better theory about technology
and organizing. Information and Organization 18, 3
(2008), 159–176.

10. Orlikowski, W. The sociomateriality of organisational
life: considering technology in management research.
Cambridge Journal of Economics 34, 1 (2010),
125–141.

11. Rico, R., Sánchez-Manzanares, M., Gil, F., and Gibson,
C. Team implicit coordination processes: a team
knowledge-based approach. The Academy of
Management Review 33, 1 (Jan. 2008), 163–184.

12. Sarma, A., Redmiles, D., and Hoek, A. V. d. Palantı́r:
Early detection of development conflicts arising from
parallel code changes. IEEE Transactions on Software
Engineering (in press).

13. Smith, D. Institutional ethnography: A sociology for
people. AltaMira Press, 2005.

	Introduction
	Statement of Current Work
	Biographies
	REFERENCES

