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Abstract 

When work products are shared via a computer system, members of distributed teams can 

see the work products produced by remote colleagues as easily as those from local colleagues. 

Drawing on coordination theory and work in computer-supported cooperative work (CSCW), we 

theorize that these work products can provide information to support team coordination, that is, 

that work can be coordinated through the outcome of the work itself, a mode of coordination 

analogous to the biological process of stigmergy. Based on studies of documents and work, we 

postulate three features of work products that enable them to support team coordination, namely 

having a clear genre, being visible and mobile, and being combinable. These claims are 

illustrated with examples drawn from free/libre open source software development teams. We 

conclude by discussing how the proposed theory might be empirically tested.  
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Work Features to Support Stigmergic Coordination in Distributed Teams 

Introduction 

We propose a theory that describes how coordination of work in distributed teams can be 

supported by the shared work products of the team. Distributed teams are groups of 

geographically dispersed individuals working together over time towards a common goal. 

Though distributed work has a long history (e.g., O’Leary, Orlikowski, & Yates, 2002), advances 

in information and communication technologies have been crucial enablers for recent 

developments of this organizational form (Ahuja, Carley, & Galletta, 1997: 165) and as a result, 

distributed teams have become popular (Martins, Gilson, & Maynard, 2004). Distributed teams 

seem particularly attractive for knowledge-based tasks such as software development because the 

work can be shared via the same systems used to support team interactions (Nejmeh, 1994; 

Scacchi, 1991).  

While distributed teams have many potential benefits, distributed workers face many 

challenges. Watson-Manheim, Chudoba, and Crowston (2012) suggest that distributed work is 

characterized by numerous discontinuities, that is, a lack of coherence in some aspects of the 

work setting (e.g., organizational membership, business function, task, language or culture) that 

hinders members trying to make sense of the task and communication with others (van Fenema, 

2002), or that produces unintended information filtering (de Souza, 1993) or misunderstandings 

(Armstrong & Cole, 2002). These interpretative difficulties, in turn, make it hard for team 

members to develop shared mental models of the developing project (Curtis, Walz, & Elam, 

1990: 52; Espinosa et al., 2001). The presence of discontinuities seems likely to be particularly 

problematic for software developers (van Fenema, 2002), hence our initial interest in distributed 

software development. Studies of software development teams (Curtis, Krasner, & Iscoe, 1988; 
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Humphrey, 2000; Sawyer & Guinan, 1998; van Fenema, 2002; Walz, Elam, & Curtis, 1993) 

conclude that system development requires knowledge from many domains, which is thinly 

spread among different developers (Curtis et al., 1988). As a result, large projects require a high 

degree of knowledge integration and the coordinated efforts of developers (Brooks, 1975).  

We focus in particular on coordination of distributed work, that is, how team members 

manage dependencies among tasks. Coordination has been a perennial topic in the study of 

teams, in empirical software engineering in particular. As Kalliamvakou put it, “To developers, 

collaboration is equivalent to managing independent contributions to the common whole” 

(Kalliamvakou, Damian, Singer, & German, 2014: 8). Coordination is clearly important for team 

effectiveness: for example, Cataldo and Herbsleb (2013) found that a failure to match 

coordination to coordination needs led to an increase in code defects.  

Distributed work seems to present a particular challenge for coordination. More effort is 

required for interaction when participants are distant and unfamiliar with each others’ work 

(Ocker & Fjermestad, 2000; Seaman & Basili, 1997). Considering software engineering again, 

the additional effort required for distributed work often translates into delays in software release 

compared to traditional face-to-face teams (Herbsleb, Mockus, Finholt, & Grinter, 2001; 

Mockus, Fielding, & Herbsleb, 2000). These problems are reflected in Conway’s law (Conway, 

1968), which states that the structure of a product mirrors the structure of the organization that 

creates it. Accordingly, it would be expected that splitting software development across a 

distributed team would make achieving an integrated product more difficult (Herbsleb & Grinter, 

1999: 85).  

Recent technology-supported team research has adopted a positive perspective, seeking 

to identify ways that technology use can improve team processes and outcomes, in contrast to a 
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problem-solving approach that seeks to identify problems to address (e.g., Carroll, Rosson, 

Farooq, & Xiao, 2009). And despite the numerous challenges, there are ways in which 

distributed work can in fact be better than face-to-face (Hollan & Stornetta, 1992). In particular, 

when work products are shared via a computer system, team participants can see the artefacts 

produced by remote colleagues as easily as those from local colleagues (Dabbish, Stuart, Tsay, & 

Herbsleb, 2014) and these artefacts can provide information to support team coordination. As we 

discuss below, coordination through artefacts (the stuff actually worked on, such as software or 

documents) is different than coordination through prior planning, roles or explicit discussion.  

Setting: Open source software development teams 

We illustrate the proposed theory in the context of Free/Libre Open Source Software 

(FLOSS) development teams, as examples of successful distributed teams with novel approaches 

to coordination. FLOSS is a broad term used to embrace software developed and released under 

an “open source” license allowing inspection, modification and redistribution of the software’s 

source without charge. Key to our interest is the fact that most FLOSS software is developed by 

distributed teams, as developers contribute from around the world, meet face-to-face infrequently 

if at all, and coordinate their work primarily by means of computer-mediated communications 

(CMC) (Raymond, 1998; Wayner, 2000). Due to their distributed nature, these teams depend on 

processes that span traditional boundaries of place and ownership. The research literature on 

software engineering emphasizes the difficulties of distributed development, but the case of 

FLOSS presents an intriguing counter-example.  

What is perhaps most surprising about FLOSS development processes is that developers 

appear often to eschew traditional project coordination mechanisms such as formal planning, 

system-level design, schedules, and defined development processes (Herbsleb & Grinter, 1999). 
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As well, many (though by no means all) FLOSS programmers contribute to projects as 

volunteers, and in most cases, without working for a common organization. Characterized by a 

globally distributed developer force and a rapid and reliable development process, FLOSS 

development teams somehow profit from the advantages and overcome the challenges of 

distributed work (Alho & Sulonen, 1998). Indeed, the subtext of many FLOSS studies is to 

understand how those work practices can be applied to other settings.  

The growing research literature on FLOSS development has addressed a variety of 

questions. A complete review is beyond the scope of this paper: numerous review articles have 

surveyed research on FLOSS (e.g., Aksulu & Wade, 2010; Crowston, Wei, Howison, & 

Wiggins, 2012; Østerlie & Jaccheri, 2007; Rossi, 2004) and there exist Web sites with 

collections of articles . The most relevant work is the research on team work practices and in 

particular, research on team coordination, which will be reviewed below.  

We have chosen this focus because studies of FLOSS teams (including our own) and of 

distributed teams more generally point to the possibility of a novel form of coordination 

(stigmergy, described below) that needs more research to fully understand but which could be 

useful if it could be generalized.  

The “coordination paradox”— How can distributed teams coordinate without communicating?  

In this section, we draw on our prior work on FLOSS coordination to describe the 

paradox that motivates this theorizing: the apparent ability of teams to coordinate with little or no 

explicit communication. This finding emerged from a study of how FLOSS developers 

coordinate their work (Bolici, Howison, & Crowston, 2016; Howison, 2009; Howison & 

Crowston, 2014). Somewhat unexpectedly, in the study we found little evidence of overt 

coordination of the development, i.e., FLOSS developers seemed to rarely communicate about 
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coding tasks. The lack of evidence was surprising considering the transparency of FLOSS 

projects: we expected to find direct, discursive communication in email or other discussion fora 

through which developers interact. But we found few examples. The lack of direct interaction 

around the work has echoes in our other research findings. For example, we found that 

developers mostly self-assign work rather than have it assigned to them (Crowston, Li, Wei, 

Eseryel, & Howison, 2007; Crowston, Wei, Li, Eseryel, & Howison, 2005) and often make 

decisions about code without explicitly evaluating options (Heckman et al., 2007; Heckman et 

al., 2006). Interestingly, when developers do discuss their work, they often refer directly to the 

software code. 

One interpretation of these findings is that rather than coordinating explicitly, FLOSS 

developers rely instead on implicit coordination (Rico, Sánchez-Manzanares, Gil, & Gibson, 

2008), e.g., by sharing well-developed mental models (Crowston & Kammerer, 1998; Espinosa, 

Slaughter, Kraut, & Herbsleb, 2007a, b) or shared understandings (Braunschweig & Seaman, 

2013) of the task that allow them to determine what needs to be done without the need for 

explicit communication and coordination. However, while developers clearly have and rely on 

mental models of the task, it seems unlikely that these explain the paradox by themselves. First, 

the FLOSS development process is highly complex and ever changing. It seems impossible that 

developers can keep their mental models up to date given the ever-changing dependencies within 

the code and modifications made by numerous other developers. Second, the problem of 

coordination is exacerbated as the participation of developers waxes and wanes over time. 

FLOSS participants are not all experts but range from newcomers to experienced software 

engineers. For implicit coordination to be sufficient, we would need to explain how 

inexperienced participants develop mental models sufficiently robust enough to address the 
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coordination needs. In short, while implicit coordination is important, this mechanism is not 

sufficient by itself.  

In this paper, we offer a complementary perspective on coordination. We focus here on 

the evidence presented above that on the infrequent occasions when they do interact, developers 

often refer to the code that they are collectively developing. We theorize that work can be 

coordinated through the outcome of the work itself, a mode of coordination analogous to the 

biological process of stigmergy (Grassé, 1959). Heylighen defines stigmergy thusly: “A process 

is stigmergic if the work…done by one agent provides a stimulus (‘stigma’) that entices other 

agents to continue the job” (Heylighen, 2007).  

The question then is how work products can support coordination. From this perspective, 

we state a more specific question for our theorizing: What socio-technical affordances of shared 

work systems enable stigmergic coordination? By socio-technical affordances, we mean the 

features of the technology used and the practices around that technology. For example, the 

source code control systems commonly used by FLOSS developers provide notifications of code 

submissions; details of the implementation of this technical feature enable other developers to 

maintain awareness of the state of the code to support coordination. To interpret these change 

messages, developers likely need some level of technical skill and mental models of the code 

structure, another kind of affordance. They may also be accustomed to creating code in a way 

that is easier for others to interpret. The inherent nature of the coding task itself may create the 

need for specific kinds of coordination that are particularly amenable to stigmergy.  

It is important to note that we are not arguing that stigmergic coordination completely 

replaces other forms of coordination. We rather see these different modes as complementary. 

Developers clearly still need to talk on occasion and there seems to be an important role for 
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shared mental models in being able to interpret the stigma to guide action. Kalliamvakou quoted 

FLOSS developers as saying “because the developers are speaking the same language it is 

easier,” and “members are familiar with the idea of working this way and share the mentality 

behind it” (Kalliamvakou et al., 2014).  

Literature review 

In this section, we review related work that informs our theorizing.  

Coordination theory  

We first introduce the topic of coordination and present the fundamentals of coordination 

theory, the theoretical foundation for the proposed study. Coordination theory (1994) synthesizes 

the contributions proposed in different disciplines to develop a systemic approach to the study of 

coordination. In this perspective, studying coordination means analyzing the management of the 

dependencies that emerge among the tasks and components of a system. This definition of 

coordination is consistent with the large body of literature developed in the field of organization 

theory (e.g., Galbraith, 1973; Lawrence & Lorsch, 1967; Mintzberg, 1979; Pfeffer & Salancik, 

1978; Thompson, 1967) that emphasizes the importance of interdependence in group work.  

Malone and Crowston (1994) analyzed group action in terms of actors performing 

interdependent tasks to achieve some goal (i.e., in an organizational process (Crowston, 1997; 

Crowston & Osborn, 2003)). These tasks might require or create resources of various types. For 

example, in the case of software development, actors include the user and various members of 

the software development team. Tasks include translating aspects of a user’s problem into system 

requirements and code, or bug reports into bug fixes. Resources include information about the 

users’ problems and developers’ time and effort.  
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Coordination theory defines coordination as “managing dependencies” and 

conceptualizes dependencies as arising between multiple tasks when the tasks use or create the 

same resources. Dependencies come in three kinds. First, flow dependencies match Thompson’s 

sequential dependency (Thompson, 1967): one task creates a resource that a second uses. Flow 

dependencies create the need to manage the usability of the resource and the timing and location 

of its availability. Second, a fit dependency occurs when the output of two tasks must fit together 

in the creation of a common resource. Alternately, if the output of the two tasks is identical, there 

is potential synergy, as the duplicate work can be avoided. Finally, a shared resource dependency 

emerges among tasks that use a common resource (like Thompson’s pooled dependency). 

Resources may also be directly interdependent, e.g., due to physical connections, in which case 

there can be dependencies between the tasks that use connected resources. 

The key point in coordination theory is that dependencies create problems or potential 

synergies that require additional work to manage. Malone and Crowston (1994) called the tasks 

embodying this extra work coordination mechanisms. For example, if particular expertise is 

necessary to perform a given task (a task-actor dependency), then an actor with that expertise 

must be identified and the task assigned to him or her. There are often several coordination 

mechanisms that can be used to manage a given dependency. For example, mechanisms to 

manage the dependency between a task and an actor include (among others): (1) having a 

manager pick an appropriate subordinate to perform the task; (2) assigning the task to the first 

available actor, regardless of skill; (3) a labour market in which actors bid on tasks; and (4) self-

assignment of tasks based on individual interest, as in FLOSS. To manage a usability 

subdependency, the resource might be tailored to the needs of the consumer (meaning that the 

consumer must provide that information to the producer) or a producer might produce to a 
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standard so the consumer knows what resource to expect. To manage shared use of a resource, 

tasks might take turns, first-come-first-served or be given a reserved time slot in which to use the 

resource.  

All collaborative work requires some coordination and so coordination mechanisms may 

be useful in a wide variety of organizational settings. Conversely, organizations with similar 

goals achieved via the same set of tasks must manage the same dependencies, but may choose 

different coordination mechanisms, resulting in different processes. And mechanisms are 

themselves tasks that must be performed by some actors, so adding coordination mechanisms to 

a process may create additional dependences that must be managed in turn.  

As an example of a coordination theory analysis, we can identify numerous dependencies 

in the software development process that need to be managed, implying the need for matching 

coordination mechanisms. Since developers work on the same codebase, there is a dependency 

between their work, requiring mechanisms for resource sharing to avoid conflicting changes. For 

example, Blincoe, Valetto, and Goggins (2012) used traces of developers’ work on the same files 

to identify the potential need for two developers to coordinate. An important dependency is 

between a task (e.g., a bug report) needing to be done and someone to work on it, requiring 

mechanisms for task assignment (e.g., the bug might be assigned by a development manager to a 

developer to ensure that it is fixed by exactly one developer). Source code, can be managed 

proactively (developers check out the code they want to work on, preventing others from making 

conflicting changes) or optimistically (e.g., change made are checked for conflicts and any 

detected are resolved). And finally, the code itself has many interdependencies, e.g., a function 

that calls other functions or two that use shared data. Changing one piece of code can affect these 
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relationships (e.g., changing a function will require changing all places that call that function), 

requiring special attention when making changes.  

We note that the coordination theory framework makes a distinction between the tasks 

and the mechanisms needed to coordinate the tasks. These two concepts are sometimes labeled 

“work” versus “articulation work” (Gerson & Star, 1986; Strauss, 1985). The conceptual split 

between work and coordination of work is also clear in the software engineering literature from 

Conway (1968) through Cataldo and Herbsleb (2008). The duality between work and 

coordination arises in part from an information-processing perspective on the work that assumes 

an input-process-output model of the work, making it natural to consider the tasks that create the 

output (connecting inputs to outputs) as the main part of the process and coordination 

mechanisms as separate from this work. Perhaps as a result, much of the focus of research on 

supporting coordination has addressed ways to improve explicit coordination. For example, an 

early CSCW system, the “Coordinator”, sought to improve coordination by making 

communication more explicit about the coordination required (Flores, Graves, Hartfield, & 

Winograd, 1988; Winograd, 1987).  

Stigmergic coordination 

In contrast to the prior focus on explicit coordination, in this study we are interested in 

how the work itself can serve as guidance for coordination. For this analysis we draw on the 

biological process of stigmergy (Dipple, Raymond, & Docherty, 2014), defined as a process by 

which one individual affects the behaviour of others through changes in the shared environment. 

For example, ants follow scent trails to food found by other ants, thus assigning labour to the 

most promising sources. But the organized collective action emerges from the interaction of the 

individuals and the evolving environment, rather than from a shared plan.  
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While stigmergy was formulated to explain the behaviour of social insects following 

simple behavioural rules, it has also been invoked to explain classes of human behaviours: the 

formation of trails in a field as people follow paths initially laid down by others (similar to ant 

trails), or markets, as buyers and sellers interact through price signals (Parunak, 2006). For 

humans and intelligent systems, the signs and processing can be more sophisticated than is found 

for insects (Ricci, Viroli, Gardelli, & Oliva, 2007). For example, the shared environment can be 

a complex workspace including annotations. Tummolini and Castelfranchi (2007) developed a 

typology of different kinds of messages possible from signs, such as having the ability to do 

something, having done something or having a goal. Christensen (2007, 2013, 2014) discussed 

how architects and builders coordinate their tasks through “the material field of work” such as 

drawings, building on earlier work in CSCW focusing on coordination through the “field of 

work” including changes in shared databases (Schmidt & Simone, 1996). 

Stigmergy has been suggested in particular as an interpretation of how FLOSS developers 

coordinate, what Kalliamvakou called a “code-centric collaboration” perspective (Kalliamvakou 

et al., 2014). FLOSS developers mostly work with the code that they are developing and source 

code control systems such as Git provide status about the state of the code and development. 

Dalle and David (2008) present a simulation of FLOSS developers allocating work based on 

information they get from the code base, providing evidence that stigmergy could be a viable 

approach to coordination in this setting. Stigmergy has also been argued as a mechanism in 

online work more generally. Elliot (2006) argued that “[c]ollaboration in large groups is 

dependent on stigmergy,” with the specific example of authoring on Wikis.  

Stigmergy can be readily interpreted in the coordination theory framework developed 

above. Malone and Crowston (1994) describe coordination mechanisms as relying on other 
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necessary group functions, including decision making, communications, and development of 

shared understandings and collective sense making (Britton, Wright, & Ball, 2000; Crowston & 

Kammerer, 1998). The stigmergic approach suggests that the “shared material” itself can be a 

communications medium, allowing coordination without recourse to separate coordinative 

mechanisms (Christensen, 2013). Christensen observed this type of coordination among 

architects, noting that their work is “partly coordinated directly through the material field of 

work…in addition to relying on second order coordinative efforts (at meetings, over the phone, 

in emails, in schedules, etc.), actors coordinate and integrate their cooperative efforts by acting 

directly on the physical traces of work previously accomplished by themselves or others” 

(Christensen, 2008).  

The stigmergic perspective can be seen in the context of ongoing debates about the nature 

of socio-material structures for articulating the entwined nature of work and coordination 

(Østerlund, 2008b). Stigmergy resonates with newer theoretical perspectives on human activity 

that “recognise the importance of the environment”, such as “activity theory, situated action, and 

distributed cognition” (Susi & Ziemke, 2001). A common element in these perspectives is the 

description of the role of artefacts in collaboration, i.e., what we are labelling as stigmergy. 

Stigmergy is also compatible with a structurational perspective on work. Structuration theory 

(Giddens, 1984) is a broad sociological theory that seeks to unite action and structure. The theory 

is premised on the duality of structures, meaning that the structural properties of a social system 

are both the means and the ends of the practices that constitute the social system. Jacob (2001) 

similarly argued that “stigmergic structures inform and control individual cognitive activities, 

they are themselves the residual products of successful problem-solving activities undertaken by 

the larger socio-cultural community”.  
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Studies of stigmergy can also be informed by research on other concepts of long-standing 

interest in the field of computer-supported cooperative work (CSCW). First, there has been a 

stream of research in CSCW and elsewhere that demonstrates the importance of team member 

awareness for supporting collaborative work. Though they are not identical, there is clearly a 

close relationship between the two ideas about supporting collaboration. Christensen (2013) 

described actions a person might take to make a co-worker aware of an issue, and so 

distinguishes awareness from stigmergy, as “stigmergy does not entail making a distinction 

between the work and extra activities aimed solely at coordinating the work”.  

Similarly, in contrast to active awareness (one participant calling for the attention of 

another), Dourish and Bellotti (1992) argued for the importance of passive awareness 

mechanisms, which could be interpreted as supporting stigmergy. Other researchers have 

proposed awareness displays that allow a team member to develop an awareness of the actions of 

other team members. Carroll and colleagues (Carroll, Neale, Isenhour, Rosson, & McCrickard, 

2003; Carroll, Rosson, Convertino, & Ganoe, 2006) examine in particular how awareness can 

support development of common ground, community of practice, social capital and human 

development in team. In this paper, we focus more narrowly on how awareness of work supports 

coordination.  

A second related concept is system translucency (Erickson & Kellogg, 2000) or 

transparency (Colfer & Baldwin, 2010; Dabbish, Stuart, Tsay, & Herbsleb, 2013; Dabbish et al., 

2014; Stuart, Dabbish, Kiesler, Kinnaird, & Kang, 2012), meaning visibility of details of 

organizational processes or functions. Consistent with our analysis of stigmergy, Stuart et al. 

(2012) analyze transparency as a form of information exchange or communication. They note 

that technology enables new forms of transparency, e.g., as in GitHub, a software development 
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site (Dabbish, Stuart, Tsay, & Herbsleb, 2012) that provides real-time updates on what other 

developers are doing. In other words, transparency is a system feature that might support 

awareness. System transparency might also support motivation to work, as participants respond 

to each other’s visible work (Olson, Howison, & Carley, 2010). Researchers have noted similar 

problems with awareness and transparency, such as the potential for information overload from 

having to review too much information or that making too much visible may inhibit the 

willingness to share work (Bernstein, 2012; Dabbish et al., 2013).  

As with stigmergy, system transparency provides information that can influence how 

people work. Dabbish et al. (2014) note specifically that transparency is helpful for coordination. 

They list numerous uses of visibility information, such as including dependencies with other 

projects (Dabbish et al., 2013). They further note that being able to see something means “much 

less need for routine technical communication” (Dabbish et al., 2013), suggesting that 

transparency is substituting for explicit coordination. Research on visibility and transparency can 

clearly be quite informative for designing systems to support stigmergic coordination. However, 

this stream of research has not specifically focused on the socio-technical affordances that enable 

users to make sense of and to use the provided stigma to support coordination, which is the goal 

of the current theorizing. For example, given the large number of possible signs available, how 

do developers decide which to attend to?  

A third related concept in the CSCW literature is provenance, i.e., the history of a piece 

of information. Rather than being explicitly and independently created, provenance of documents 

is built as the documents are changed, or recorded from interaction as the documents are used, 

i.e., it is a kind of stigma. Hill, Hollan, Wroblewski, and McCandless (1992) and Wexelblat and 

Maes (1999) pointed out that knowing how others have interacted with a piece of information 
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can be informative for future interactions with it. Similarly, knowing the history of a document’s 

development is important in evaluating and knowing how to use it.  

There are of course many, many collaborative systems designed to support groups and in 

particular to support coordination of group work (that is, for managing dependencies among 

group tasks). However, only a few systems have been explicitly aimed at supporting stigmergic 

coordination. Musil, Musil, and Biffl (2014) proposed the concept of a Stigmergic Information 

System (SIS) architecture metamodel, though their goal is to develop an architectural model that 

describes many different kinds of systems rather than to build a particular one. Most of the 

systems described as stigmergic appear so far to focus on simply providing access to the shared 

work, without specific attention to coordination of the work. For example, Zhang, Zhao, Jiang, 

and Jin (2015) described a system for allowing collective construction of a conceptual model. 

Secretan (2013) described the Picbreeder system in which users interact only via images to create 

new images.  

Theory building 

In this section, we build an initial theory of the socio-technical affordances of systems 

necessary to support stigmergic coordination, with particular attention to the relation between 

stigmergy and other forms of coordination. It is hypothesized that these characteristics of 

systems for sharing work will support coordination of the work, thus distinguishing a system for 

stigmergic coordination from systems for explicit coordination on the one hand and systems for 

simple information sharing on the other.  
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Documents 

To theorize what affordances of work support coordination, we turn to the literature on 

documents and work (Østerlund, Sawyer, & Kazianus, 2010). Software code is a semiotic 

product recorded on a perennial substrate that is endowed with specific attributes intended to 

facilitate specific practices (Zacklad, 2006), thus making it a kind of document. Code differs 

from other kinds of documents by serving two audiences, one being a machine, the other 

software developers. However, we focus on the latter, describing properties of code that allow 

developers to share their work with colleagues, and to read, understand and respond to their 

intentions.  

Scholars have described how documentation and other accounts of work play a central 

role in the coordination of work (Bowker & Star, 1994, 1999; Østerlund, 2007, 2008a, b; Smith, 

2005; Suchman, 1993, 1995). These perspectives have long pointed to the double role of 

documents as both “models of” work and “models for” work. For the first, documents provide an 

account “of” reality as workers manipulate text and other symbolic structures so as to parallel 

them with reality. For example, developers may carefully document the code they have 

constructed to create a report of the work done. But documents also provide a basis from which 

people further manipulate the world. For example, developers’ reports are not simply accounts of 

work completed: the reports guide ongoing work by prescribing what is left to be done or 

enabling collaborators to coordinate their work. Taking inspiration from Smith (2005) and 

Bakhtin (1986), we suggest that a work product is rarely completely original; it is always an 

answer (i.e., a response) to work that precedes it, and is therefore always conditioned by, and in 

turn qualifies, the prior work. What the programmer does when facing somebody’s work is 

responsive and partially determined by what has been going on up until now. The reports are 
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thus accounts “for reality” as they provide a blueprint of the software taking shape. Documents 

in this way offer a double accountability: when documenting the coding of a software program, 

developers mold the account to the reality of the code on their computers and at the same time, 

mold their ongoing coding to the account.  

Three further concepts from document studies stand out as helpful in articulating how 

work can serve as a model for work: genre, visibility and mobility, and combinability. We 

address these in turn.  

Document, genre and genre systems 

First, people can recognize a document as a model for possible action only because they 

have some background knowledge about the genre of that document, and thus the expectations 

associated with that type of communication (Østerlund, 2007). A genre is defined as typified 

action invoked in response to a recurrent situation (Yates & Orlikowski, 1992). For example, 

common document genres related to a conference research paper include submission, reviews 

and acceptance letter. Each has a characteristic form (e.g., a review form) and purpose. People 

engage genres to accomplish social actions in particular situations, which are characterized by a 

particular purpose, content, form, time, place and set of participants.  

The same can be said about FLOSS work products. A developer engages in typified 

actions invoked in response to recurrent situations. They do so to accomplish something 

characterized by a particular purpose, material form, place, time and participants. By completing 

a piece of code and leaving it for a colleague to work on, a developer invokes a specific genre of 

work. The colleague will be able to pick up and work with the code because it invokes that genre 

and so comes with certain expectations. The first engineer might have created a scaffold of a 

module that simply outlines a structure. In so doing, his work product becomes a model for work 
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associated with specific elements and course of action. It might invoke a sequence of steps or 

routes to a conclusion. It might invoke certain categories or socio-material arrangements that 

must be used. In this way, a piece of completed work serves as a model for future work by 

drawing on its own genre, i.e., what are the expected outcomes, what materials and forms should 

be invoked at what places and times and by what types of participants.  

Furthermore, documents related to work (and so we argue, the work itself) are often 

organized into what are called genre systems (Orlikowski & Yates, 1994), formalized sequences 

of documents of particular genres providing more or less standardized methods for recognizing 

what might be done and what does get done as legitimate work. We alluded above to the genres 

surrounding a conference paper. The process of publishing a journal paper similarly involves a 

sequence of documents of specified genres, adding to the above a editor’s report, revised 

manuscript, summary of revisions, final submission, galley proof, copyright release and 

published paper.  

A key point in the analysis of work in terms of genres is that for genres and genre 

systems to enable documents to function as models for work they must be part of the conventions 

of practice shared among members of particular communities. Genres are not naturally 

occurring. They are rather learned as part of membership of such communities: As new 

participants are socialized into communities, they gradually acquire a naturalized familiarity with 

the socio-material arrangements and prominent genres. 

Turning back to FLOSS, source code provides genre expectations and thus serves as a 

“model for” work at two levels. First, the FLOSS development process includes many distinct 

and typified actions involved in response to a recurrent situation and expressed in a set of 

characteristic documents, including source code, bug reports, commit messages and so on. These 
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genres are associated with particular purposes, forms, content, times, places and participants for 

the related tasks. For example, the purpose of the code is to instruct the machine to perform an 

application, whereas bug reports are used to provide information to developers about observed 

problems with a program. Code is used nearly exclusively by developers, while bug reports are 

shared between users and developers. By looking at these work outputs, experienced FLOSS 

participants can tell which tasks are called for.  

Second, the source code itself has a structure in which each component has more-or-less 

well-defined purposes associated with particular functionalities. There are genres of source code: 

It collectively has the purpose of providing instructions for the computer, but as well, each 

module of a program has its own particular purpose and so its own subgenre. For example, some 

modules may manage the interface, while others deal with interactions among particular data 

sources. Clarity of communicative purpose is of critical importance for developers; it should be 

clear which components are appropriate to modify to add some desired new functionality. In a 

well-structured program, the purpose of each module is clear—the subgenre is recognizable—

and so the code is useable by others as a model for work. In poorly structured code, the purpose 

of particular module may be hard to determine or, in fact, muddled and unclear. This confusion 

may not directly affect the functionality of the program, but in these cases, the code does not 

constitute a genre. Future programmers cannot tell where to add new functionality because the 

current work outcomes do not make it clear how to add it without negatively interfering with 

existing functionality. Consistent with this view, developers reflecting on success factors for 

FLOSS argue that developing the right program structure, one that communicates well to other 

developers, is key to the success of a FLOSS project.  
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FLOSS development further provides expectations about sequential ordering of 

documents. The broad genres of software development seem to be arranged in an organized 

manner where one task typically follows another. For instance, a developer would first read a 

bug report, then change the code and commit, creating a source code control system commit 

message. Releases have their own sequence of documents, such as release note, packaged 

software, binary distributions and so on. In other words, the FLOSS infrastructure supports 

certain sequences of documents that suggest particular sequences of processes that participants 

learn as part of membership in the group.  

Visibility and mobility 

The second key feature of documents is their visibility and mobility. For a piece of work 

to serve as a model for future actions it must be visible and accessible to others in a shared work 

zone (Kellogg, Orlikowski, & Yates, 2006). Obvious as it may seem, making work visible is not 

a straightforward process. As discussed by Suchman (1995), some work may be more visible 

than other work; some work may cover up previous activity and render it invisible. For example, 

service work is notoriously hard to make visible: the better such work is done, the less visible it 

is to those who benefit from it. CSCW research on awareness and transparency also addresses 

these concerns. Understanding what elements of work are accessible and how its visibility may 

change over time is central to understanding how work may or may not serve as a model for 

future work. Similarly, for work to coordinate tasks beyond a physically-restricted space, it must 

become mobile (Latour, 1990), meaning that it is conveyed to a context in which others can 

encounter it.  

Most obviously, the FLOSS development infrastructures support the mobility of work by 

being Web-based. Any FLOSS developer can download the source code from the source code 
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control system and have access to others’ work as a basis on which they can build their own. As 

a result, software engineers can, in many situations, use others’ work as a model for their own 

work because of their ubiquitous access to the server containing the code. Further, many systems 

provide a mechanism to push changes to locally other developers’ workspaces, rather than 

having to wait for those others to seek them out. By being in multiple places, code can 

coordinate work in multiple settings.  

In FLOSS, the source code control system also records a revision history: all changes 

made to each file in the system including what files are created or deleted by whom, when (the 

file’s provenance). Many changes include short notes that can explain why a change was made 

(although many changes do not, apparently expecting the reader to examine the code directly). 

Such histories not only serve as ‘models of’ work but can also point forward by depicting the 

generally accepted work process. For a newcomer, such histories provide a window to how 

things are done, what tasks tend to follow what tasks and what is regarded as good and opposed 

to bad (i.e., reverted) work. Visibility of FLOSS work is promoted as well through cultural 

norms about development. A widely acknowledged culture norm in open source is to “check in 

early, and check in often.” If people do not share their work often, they are not making it visible 

to other participants to build on. Large infrequent commits (“code bombs”) increase the chances 

that there will be conflicts and make it harder for other developers to understand what a change 

does, again hampering visibility. Indeed, a frequent complaint about a code contribution is that it 

is too large for developers to easily understand.  

Combinability 

The third important characteristic of work is combinability. For work to be a model for 

future work, the work must be combinable and improvable in increments that can be 
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superimposed on existing work (Howison & Crowston, 2014; Latour, 1990). If a piece of work is 

done, nothing is left to do, hence Raymond’s surprising injunction to “leave low hanging fruit” 

(Raymond, 1998). Most work tasks are layered and complex: New work contributions can be 

adjusted and added to existing outcomes. A piece of work might start out as an incomplete 

frame, a scaffold on which other parts get added in some organized sequence. Later, new 

functionality can be added to the existing structure. In this way, a program evolves from version 

to version through a process described as “superposition” (Howison & Crowston, 2014).  

Combinability in FLOSS development is supported both by the source code control 

system infrastructure and cultural norms. First, there are strong cultural norms for providing 

“atomic commits,” that is, developers are encouraged to address only one change or topic when 

committing new code, leading to many small commits (Arafat & Riehle, 2009). It is easier to 

combine code with a focused commit than with a commit that does multiple things and touches 

bits and pieces of dozens of files in the process. It is likewise easier to back out a focused 

commit if things should go wrong. Developers are also warned: “Don’t break the build”, which 

means that the main set of files in the source code control system should always compile and run. 

This practice ensures that any developer who downloads the code will be able to work with it, 

supporting the individual development described above.  

Combinability is further supported by the source code control system infrastructure 

allowing participants to try out experiments on the code in a branch before committing it. 

Developers can execute and test ideas at any time without interfering with others; they can run 

the software with their proposed changes and obtain direct feedback about the combinability and 

thus success or failure of their changes. This approach allows them to iteratively enhance their 

understanding of the task and to modify their strategy for managing dependencies between the 
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existing system and what they are trying to accomplish. In this way, developers can interact with 

the code base as they would engage in a conversation by continuously receiving feedback on 

their output. Thus, developers can avoid a lot of communication with co-developers, since their 

active engagement with the artefact provides substantial insights; one has less need to ask 

another what their intentions were when one can experiment with the codebase.  

Summary 

In summary, from the literature we understand why coordination is important and a 

theoretical framework for examining stigmergic coordination in teams. Task design determines 

what dependencies exist in the work and the coordination mechanisms needed. The literature 

also provides a starting point for identifying the socio-technical affordances that enable team 

members to make use of stigmergic coordination, e.g., the role of genres of work and the 

visibility and combinability of the work contributions. Again, the nature of the tasks will 

determine the genres of work that provide information to support coordination. At an individual 

level, prior work suggests that motivation to cooperate will be important (Dabbish & Kraut, 

2004).  

Conclusion 

In this paper, we have presented a theory that predicts the features of shared work that 

enable the work to serve as a resource for coordination in distributed teams. Further research is 

needed to test this theory. Several approaches seem feasible.  

First, field studies could be done with members of distributed teams (e.g., FLOSS 

developers) to determine how they use shared work to coordinate their own contributions, thus 

testing the predictions of the theory. To maximize the chance of seeing stigmergic coordination 

in action, it would be best to focus on large, complex, active projects with high levels of 
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distribution and heterogeneity in participation. The need for coordination will be most 

pronounced in larger teams working on larger and more complicated systems. Communication 

challenges will be most pronounced in teams with distributed members that lack frequent 

opportunities to communicate. As well, more active projects will produce more code changes 

that increase the need for awareness of what other members are doing. 

A key research activity in such studies will be to identify prominent genres of 

information used and their role in genre systems. To assess visibility and mobility, one can 

identify how work products are accessed, examine the gap between production and use and 

check whether subjects can say where a particular piece of work came from. To assess 

combinability, one can examine how work provided by others is incorporated into the subject’s 

own work.  

A second possible approach for a study is to examine developer email mailing lists for 

mentions of looking at source code as a basis for making decisions about coordination. This 

approach has the advantage of possibly examining multiple developers in multiple teams, though 

the effort involved in coding data may be a barrier.  

In addition to studying FLOSS teams in which stigmergic coordination is believed to 

happen, it would be instructive to study other kinds of distributed teams in which the work 

products have some but not all of the hypothesized necessary features. For example, interviews 

could be done with a few Wikipedia editors to understand how the evolving articles themselves 

guide editors’ work and what limitations these have in supporting coordination.  

Finally, future research could adopt a design science approach, seeking to build a system 

that embodies the recommendations of the theory and testing its capacity to support stigmergic 

coordination. As an example, consider developers collaboratively creating systems analysis 
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diagrams (e.g., UML class diagrams). A system could affect how changes to shared diagrams are 

made visible. Developers using single-user drawing tools need to share entire diagrams, which 

makes it difficult for recipients to identify specific changes. When using an online shared 

drawing tool (e.g., gliffy or LucidChart), changes are visible line by line, perhaps making it hard 

to understand the intent of changes. It may be that grouping changes in semantically-meaningful 

chunks and providing notifications in a form like code check-in messages better supports 

coordination by making it easier to understand what has changed and why. We expect that prior 

work on activity displays (Carroll et al., 2003; Carroll et al., 2006; Dabbish & Kraut, 2008) and 

translucency (Erickson, 2003; Erickson, Halverson, Kellogg, Laff, & Wolf, 2002) will be 

informative in the design process.  

Combinability of contributions is also hypothesized to be important, but this feature is not 

explicitly addressed in prior work. Making contributions to a diagram combinable may be more 

challenging. It will also be important to develop social affordances that support stigmergy. 

Implementing social features may require training for users, provision of other kinds of 

information (e.g., overviews to help build mental models of the structure of the work) or careful 

selection of the tasks to be supported. 

In summary, an empirical study would provide evidence for (or possibly against) 

stigmergic coordination as a mode of coordination in distributed work. At present, the evidence 

for stigmergy is mostly indirect. The results would also illuminate the possibilities and limits on 

the transfer of coordination mechanisms from FLOSS development to other domains. 

Even in its current state, the proposed theory suggests the socio-technical affordances that 

enable the use of stigmergy in FLOSS development and extends current CSCW research on 

transparency by providing a theoretical framing for its impact on coordination. Stigmergic 
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coordination could be useful in a broad range of settings where team members seek to coordinate 

work while reducing the overhead of explicit communications.  
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