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ABSTRACT

This thesis presents the first steps towards a theory of coordination in the
form of what I call a coordination cookbook. My goal in this research is hypothesis
generation rather than hypothesis testing: I attempt to develop a theory of
coordination grounded in detailed empirical observation. I am especially
interested in using this theory to identify ways of coordinating that may become
more desirable when information technology is used to perform some of the

coordination.

I address the follbwing quesﬁon: how can we represent what people do to
coordinate their actions when they work together on commeon goals, in a way
that reveals alternative approaches to achieving those goals? To answer this
question, I study groups of people making engineering changes to complex
products as an example of a coordination-intensive task. I perform detailed case
studies of the change process in three organizations: an automobile
manufacturer, a commercial aircraft manufacturer and a computer system

software developer.

To analyze these cases, I develop a technique for describing the behaviour
of the members of an organization, based on research in distribgted artificial
intelligence (DAT). Ifirst develop a data-flow model of the change process to
identify what information was used and how it was processed by the different
meﬁbers of the organization. Then, using ideas frbm DAI, I model what each
individual must have known about the task and the rest of the organization to act

as observed.



To develop a theory of coordination, I generalize from these specific
individuals to the kinds of tasks they performed. I develop a typology of
interdependencies between organizational tasks and objects in the world
(including resources and products). This typology includes four categories of
coordination needs, due to interdependencies between: (1) different tasks,

(2) tasks and subtasks, (3) tasks and objects in the world and (4) different objects.

I then re-examine the cases to identify the coordination methods used to
address these needs. (These coordination methods are similar in spirit to the
weak problem solving methods of cognitive science.) I represent each method by
a set of what I call coordination recipes that identify the goals, capabilities and
knowledge of the individuals involved. In some cases, consideration of the
possible distributions of these elements suggests approaches other than those
actually observed. This framework allows an analyst to abstract from a
description of how a particular organization performs a task to a description of
the coordination needs of that task and a set of alternative coordination methods
that could be used to address those needs.

The results of my thesis should be useful in several ways. A better
understanding of how individuals work together may provide a more principled
approach for designing new computer applications, for analyzing the way
organizations are currently coordinated and for explaining perceived problems
with existing approaches to coordination. By systematically exploring the space
of possible coordination strategies, we may be able to discover new kinds of
organizations—organizations in which humans and computers work together in

as yet unimagined ways.

Thesis supervisor: Thomas W. Malone
Patrick J. McGovern Professor of Information Systems

Thesis committee: John S. Carroll
Deborah Ancona



- PREFACE

O what a beautiful morning at the end of November, in the
beginning was the word, sing to me, goddess, the son of Peleus,
Achilles, now is the winter of our discontent. Period, new
paragraph.

~Eco, Focault’s Pendulum

As 1 was cleaning out my office the other day, I came across a Sloan School
personnel list from the spring of 1984, shortly before I entered the Ph. D.
program. When I compared it to the most recent personnel list from the fall of
1990, I noticed many changes. A couple of changes in the form of the list struck
me as being particular relevant to my study of information technology.

First, while the old list had been typed by hand, the new one was
prepared on a word processor. The new list had no typographical errors or
crossed out lines like the old one did. This kind of immediate improvement in
individual performance is one reason information technologies like word
processors have become so widely used. (It is certainly the case that without a
word processor, this thesis might never have been finished.)

However, a more subtle change was also visible. Where the old list said
simply, “Spring 1984”, the new list showed the exact date and the time it had
been printed. The new technology had reduced the cost of preparing a personnel
list so far that several lists might be prepared in a single semester or even on the
same day. This kind of second-order effect will, in the long run, have a much
more pronounced effect on the way organizations do business, but these kinds of
changes are much harder to predict.

Second, where the old list gave only the name, room and phone number,
the new list added electronic mail addresses. Only about 70% of the people on
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the last had one (or had it listed), but still, in the last seven years, electronic mail
had gone from something only a few computer scientists have to a medium used
regularly by otherwise non-technical academics. It is now usual for a conference
registration form or other mailing list to request electronic mail addresses. A
similar change has taken place in regular business circles; within the last few
years electronic mail has gone from unheard of to commonplacel, at least within
large firms.

As a first-order effect, electronic mail makes communication cheaper and
faster, especially with correspondents in other cities, thus permitting greater
interaction between geographically separated individuals. However, as the
presence of the addresses on an internally distributed list shows, electronic mail
may be used even for communication within a single site, between people who
could (and probably do) talk face-to-face. The second-order effects of this
cheaper communication are only beginning to be seen.

The widespread use of electronic mail is especially interesting to me
because it is an example of an information system that supports not just
individuals, but groups. (Individual electronic mail is something of an
oxymoron.) One goal of my thesis is to suggest ways to determine what kinds of
group support systems organizations might find useful and to predict the first
and second order changes associated with their use.

* * *

A comparison of the contents of the two lists revealed many other changes
over the last seven years. Of the 234 names on the first list and 276 on the
second, only 96 were the same, meaning, I suppose, that I have had the
opportunity to work with at least 414 faculty and staff (not counting those who
arrived and left again within seven years). Other groups have turned over even
more thoroughly: of the 90 or so current Ph. D. students, only 6 have been here

1 Based on informal surveys of attendees at talks; audience members were asked to raise their

hands if they use electronic mail. (Malone, personal communication.)
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since 1984 (proving, I suppose, that graduate students really do not last longer
than the faculty, even if it sometimes seems that way).

Continuing in this quantitatively reflective mood, I have determined that
outside of school, in the same seven years, I have had no fewer than thirty-five
housemates. I can not even begin to estimate the number of friends I've made—
but the set of my immediate family members at least has remained unchanged.

I owe many of these people for many things over the last seven years. It's
unfortunate that I didn't keep a diary; my public thanks will have to rely instead
on retrospection, a notoriously unreliable data source (see Chapter 3).

I would like to thank:

First, my advisor, Tom Malone, for doing all the things advisors are
supposed to do and more—listening to and discussing my ideas, reading drafts
and suggesting changes, believing that I would actually finish and paying me
until I did and generally getting me started in an academic career—and all for a
student who doesn't (didn’t?} really believe in working hard. The fact that
neither one of us can remember who thought of some of these ideas first is a
good indication of the collaborative nature of our work.

The other members of my thesis committee, Deborah Ancona and John
Carroll, for patiently listening to ideas about organizations from a rather
different field (left field?) and for their many suggestions for improving their
presentation.

My co-researchers: Felix Lin, who participated in an earlier field study,
documented in (Crowston, et al., 1987), that laid the foundation for this study;
and Stephen Brobst, who arranged and participated in the field work at my first
case site, Computer Systems Co.

The employees of my three case sites, Computer Systems Co., Car Co. and
Airplanes, Inc. for generously taking the time to answer my questions and tell me
“what they did when they did engineering changes”. I hope they will recognize

- themselves (collectively) in my cases and find something new in my analysis.



The Sloan Information Technologies faculty, for providing such a
comfortable environment in which to work, and Wanda Orlikowski in particular
for several times helping me figure out what it was I was trying to say.

Randy Davis and Lynn Stein for providing a few real insights from the
world of artificial intelligence and common sense reasoning.

The students and staff of the Center for Coordination Science—Jin Lee,
David Rosenblitt, Paul Resnick, Kum-Yew Lai and Mark Ackerman—and other
Sloan Ph. D. students, present and past, including (at least) Andy Trice, M.
Bensaou, David Robertson, Yannis Bakos and Michael Epstein, all of whom have
greatly contributed to my intellectual quality of life. Talking with them and
especially with Brian Pentland, my co-coordinationist, have helped me clarify my
thinking and, as importantly, made me realize that not knowing what I was
doing is a stage everyone goes through. |

Judy Shapiro, Lisa Fleischer and Allen Feinstein, who read and
instructively failed to understand various formerly poorly written bits of this
document.

My housemates, for making it worth going home.

And finally, my family, who most recently tolerated my rewriting my
thesis during our Christmas vacation and especially my sister Clare, who lent me
her laptop computer with which to rewrite it; truly a case of information
technology making the possible easy and the otherwise impossible only time-
consuming.

—Paris, 9 January 1991
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TOWARDS A COORDINATION COOKBOOK

“Begin at the beginning,” the Kind said, very gravely, “and go on
till you come to the end: then stop.”

—L ewis Carroll, Alice in Wonderland

What good are organizations? Obviously, organizations exist for many
reasons. One of the most important is to channel the efforts of the
organization’s members in ways that allow the organization to accomplish
things that no individual working alone could do. For example, an
automobile is such a complex product that no one individual can be said to
know how to design and build one, yet several organizations routinely do
exactly that.

This ability has a cost: much of the work done by the employees of an

- automobile company has little to do with actually building automobiles (what
I call production work). Instead, these workers spend their time coordinating
their actions and the actions of others. As yet, however, we have only an
informal understanding of what coordination work is or how it is useful.
This lack of understanding limits our ability to diagnose problems with
existing organizations or to imagine new ways to organize in response to
changing demands from the environment or abilities of the organizations.

This thesis presents the first steps towards a theory of coordination in
the form of what I call a coordination cookbook. My goal in this research has
not been hypothesis testing; rather, I have attempted to develop a grounded
theory of coordination. I addressed the following research question: how can
we represent what people do to coordinate their actions when they work in
groups to achieve common goals, in a way that reveals alternative approaches
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to achieving those goals? 1 am especially interested in identifying ways of
coordinating that may become more desirable when information technology
is used to perform some of the coordination.

To make these issues more concrete, I propose three “benchmark”
problems as a test of the theory to be developed. First, in what ways can a
given organization be arranged differently while achieving the same goals?
Second, what kinds of information technologies will be useful to support a
particular organization? Finally, how might the preferred structure for an
organization change with extensive use of information technology?

My approach to answering these questions has two parts. First, I have
developed a technique for describing the members of an organization, based
on research in-artificial intelligence. Second, I have developed a typology of
coordination problems and alternative ways those problems can be addressed,
based on an empirical study of three organizations. This framework allows
me to abstract from a description of how a particular organization performs a
task to a description of the coordination needs of that task and then to a set of
alternative coordination methods that could be used to address those needs.
In Chapter 8, I will discuss in more detail how the theory developed in this
thesis heips address these problems. |

1 Coordination

To start, let me informally define coordination. We all have an
intuitive notion of what coordination is. For example, when we see a
smoothly running factory or a skillful basketball team, we might say that the
workers or team members are well coordinated. Three examples from one
case site will illustrate the kinds of behaviours I hope to explain with my
theory.

1} Customers with problems call the response center to report them. The
response center first looks for solutions to the problems in a database of
known problems,

20



2)  If the solution is not found in the database, the reported problems are
routed, in a several-step process, to an engineer responsible for the module
with the problem to be fixed.

3} The responsible engineer aftempts to fix the problem. The changes
considered may involve multiple modules; the software engineer
determines which other modules may be affected, using mental and
sometime physical models of the system and consults with the engineers
responsible for those modules. This process may result in those other
engineers making additional changes to their modules.

Our intuitive definition of the word “coordination” may lead us into
difficulties, however: in particular, we seem to use the word in at least two
different ways, similar to the way we use “diet” to mean both what people eat
in general and a specific regime designed to achieve some goal, such as losing
weight. The general sense of “coordinated” is that.the individuals actually

“achieve their common goals; the specific sense is that the individual actors
work together in a closely coupled manner. The first meaning is usually seen
as a positive outcome; the second is relatively neutral. In order to separate
these meanings, I will replace uses of “coordinated” in the first sense by some
notion of group performance. I will then focus on the ways people |
“coordinate” in the second sense.

It is worth noting, for example, that one possible way of being
coordinated (in the first sense) is by not being coordinated at all (in the second
sense), that is, people may succeed in achieving their common goals at low
cost even though the individuals make no special effort to work together. In
general, of course, additional efforts are necessary.

1.1  Some properties of coordination

Even though my-initial definition of coordination is -essentially, “T'll
know it when I see it,” I can still identify a number of what seem to be
important characteristics. '

Coordination is an information processing task. An important part of
what goes on in coordination involves communication and processing of
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information. The organizational structure of the group, by constraining the
possible patterns of communication, has a powerful effect on the way a group
is coordinated. In fact, as Thompson (1967) argues, organizational structures
exist mostly to enhance particular patterns of coordination. Note that the
communication necessary need not be coincident with the task in question:
one way of being coordinated is to plan everything in advance so no
communication is necessary at the time the task is performed. Another way
is to do nothing in advance and communicate only as required by the
situation. Different levels of communication may be handled differently; for
example, actors might communicate in advance to decide what kind of
information is needed and communicate only that information as necessary
during the process.

Although this dissertation is focused on understanding human
organizations, I believe that the same issues are relevant to the coordination
of any goal-directed system. Examining these issues from many points of
view may provide additional insight into each domain. Fox (1981), for
example, suggested using ideas from organization theory to analyze
distributed systems. In this thesis I will attempt the opposite, that is, use ideas
developed in computer science to aid in the understanding of human -

organizations.

Coordination depends on the goals of the organization. What is
considered coordination, production or wasted effort depends on the goals of
the group being analyzed. For example, in a car company, accounting would
likely be considered a coordination task, since balancing the books does not
directly help build cars but rather tracks the allocation of resources. For an
accounting company, however, “book balancing” may be a primary goal and
accounting therefore a productidn task. I an individual performs some tasks
which do not help the organization reach its goals in any way, those tasks
may be considered wasted effort. For example, designing a part which will
not be used would probably be considered a waste of time. In some cases, it
may seem that individuals are doing unnecessary things, like chatting in the
hallways, but those actions may be necessary to achieve other goals, like



maintaining communications channels, individual motivation or the social
cohesiveness of the organization.

Coordination is attributed to a situation by observers. Attributing goals
to groups is problematic. As Cyert and March (1963) pointed out, “people
have goals; collectivities of people do not” (p. 26). Although this statement is
true in a strict sense, we will find it useful to treat organizations as if they had
goals. As discussed in Malone and Crowston (1990), the actors involved in a
situation may or may not all agree on the identification of the goals or the
boundaries of the organization. Instead, one or more of these components
may be atiributed by an observer in order to analyze the situation in terms of
- coordination. For instance, in analyzing market, we might as observers
regard the goal to be achieved as one of optimally allocating resources to
maximize consumer utilities (e.g., Debreu, 1959). Even thoﬁgh no single
individual in the market necessarily has this goal, observers might evaluate
market coordination in terms of how well it achieved this goal.

In taking this approach, we adopt Dennet’s (1987) intentional stance:
since there is no completely reliable way to determine someone’s goals (or if
indeed they have goals at all), we, as observers, can only impute goals to the
actors. The key issue then is how useful the imputed goals are for
understanding the behaviour of the system. Therefore, in order to analyze -
how the actions of members of an organization are coordinated, we will
assume that they are attempting to perform some task. Other researchers
have found this focus useful; Hackman (1969), for example, pointed out that
tasks are important to understanding behaviour. Organizations are often
created explicitly to perform some task. I will therefore assume the actors are
attempting to perform a particular task and analyze how they do it.

Once the organization has reached a steady state, this is not an
unreasonable assumption. Cyert and March (1963) suggested a mechanism of
bargaining and side payments through which individuals reach a consensus
on common goals, but note further that, in fact, organizational goals are
relatively stable; coalition members develop mutual control-systems, such as
budgets or allocations of functions and then bargain within these systems. As
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they pointed out, when “precedents are formalized in the shape of an official
standard operating procedure or are less formally stored, they remove from
conscious consideration many agreements, decisions and commitments that
might well be subject to renegotiation in an organization without a memory”
(p- 33).

In the example cases, the task is to implement engineering changes to
fix existing problems without introducing new problems. I am not claiming
that the actors have only this one particular goal; clearly actors have many
. goals, both organizational and individual. However, I am analyzing the
organijzation’s performance with respect to only certain of these goals.

Coordination depends on the level of analysis. The amount of
coordination an analyst observes depends on the level of aggregation of the
system studied. Consider again the eXample of a car manufacturing company.
Most of the tasks performed by the materials management group, such as
ordering parts, planning the shipment of parts or checking supplies, are
coordination methods. If you consider just the materials management group,
however, then creating a parts shipping schedule is the goal of the group and
is a production function. Therefore, in some ways, many actions are and are

not coordination simultaneously.

It is also possible to analyze the same physical actions in different ways
for different purposes. For instance, we might sometimes regard each person
in a work group as a separate actor, while at other times we might regard the
whole group as a single actor in a larger organization. Sometimes we might
even choose to regard different parts of the brain of a single person as separate
actors (e.g., Minsky, 1987). Similarly, observers may choose to define actions
at different levels of abstraction depending on their purposes in analyzing the

situation.

However, viewing an organization at some level as a collection of
black boxes focuses attention on the tasks necessary to coordinate between
those boxes. This is the approach I will take in this thesis. I assume a
particular level of division of work and analyze coordination at that level.
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This approach is necessary in order to make the problem manageable; the
assumption is that if we looked inside the black boxes, we would see more-or-
less the same set of issues.

Coordination may be necessary even when there is only a single actor.
Clearly, many important coordination situations involve multiple actors, and
most previous work (e.g., Malone, 1988) has defined coordination as
something that occurs only when multiple actors are involved. Since then,
however, I have become convinced that the essential elements of
coordination listed above arise whenever multiple, interdependent actions
are performed to achieve goals, even if only one actor performs all of them.

1.2 Elements of coordinated situations

To provide a more precise definition of coordination to gﬁide'my
study, I want to identify the important elements of coordinated situations.
(Much of the following discussion is drawn from Malone and Crowston
(1990).) I start by considering the implications of the following dictionary
definition of coordination (American Heritage Dictionary, 1981):

the act of working together harmoniously.

First, what does the word “working” imply? The dictionary defines “work” as
“physical or mental effort or activity directed toward the production or
accomplishment of something” (American Heritage Dictionary, 1981). Thus
there must be one or more actors, performing some actions which are

directed towards some ends. In what follows, we will refer to the ends
towards which tasks are directed as goals. Actions may produce something
and, even though this definition of work doesn’t explicitly refer to them, may
require tools or other inputs; we will refer to these outputs and inputs |
collectively as objects.

For example, an automobile manufacturing company might be
thought of as having goals of producing several different lines of automobiles
and a set of actors, human workers, who use objects, such as machines, raw
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material and their own efforts to perform tasks necessary to achieve the goals.
As another example, a computer network can be thought of as having goals of
performing various computations and a set of actors, computer processors of
various types, that use and create data to pérform tasks to achieve the goals.

In the three examples on pages 20-21, the goal is assumed to be fixing
reported bugs. The actors include customers, the response center, different
intermediaries and software engineers. The objects are not explicitly
mentioned, but include the actors’ efforts, various computer systems,
programming aids and documentation.

These elements—actors, actions, goals and objects—are not
independent. By using the word “harmoniously”, the definition of
coordination implies that the actions must be performed in a way that results
in “pleasing” and avoids “displeasing” outcomes. I refer to these
relationships between actions as interdependencies. Interdependencies
constrain how actions can be performed, causing what I call coordination
problems. In the three examples on pages 20-21, the problems are 1) avoiding .
duplicate problem reports, 2) finding the correct engineer to work on a given
problem and 3) managing interdependencies between modules of the
operating sjrstem.

Faced with coordination problems, actors must, in general, perform
additional actions to achieve their goals. I call these additional actions
coordination methods. In the examples, the methods used are 1) looking up
the answer in a database rather than resolving the problem, 2) task
assignment procedures and 3) consulting with other engineers and getting
‘them to make changes to their modules.

131 About coordination methods

Before going on, a few observations about coordination methods are in
order.

Coordination methods do not always arise in the same order. For
instance, if a group finds it very hard to handle the interdependencies that
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arise from a particular task decomposition, they may choose to redefine the
subtasks in a way that leads to fewer (or easier to handle) interdependencies.
(Choosing which coordination methods to apply is itself a coordination

problem, or perhaps meta-problem, one that I have not addressed in detail.)

Coordination methods are performed over different time scales.

- Depending on the time period during which we observe a system we will see
different kinds of coordination methods. For example, designing or
redesigning an organization (e.g., by selecting actors with particular skills or
developing roles for them) is a kind of coordination task that is usually
carried out only infrequently; picking a particular actor in a given
organization to perform some action may happen quite frequently.

Coordination methods are not always equally important. For instance,
in scheduling tasks on a network of computer processors, the resources (.e.,
computer processihg time) may be already available and the primary issues
may involve allocating rather than acquiring these resources.

Coordination methods may be performed by many actors. In some
cases, one actor may perform many coordination methods and present a plan
to the other actors who simply follow it. Alternately, each actor may do part
of the coordination work itself. The argument is simply that these tasks must
be performed somehow in order for the organization to achieve the
organizational goals at all. '

Coordination methods may themselves require coordination. The
above analysis of coordination methods can be performed recursively. An
organization needs coordination methods to coordinate the production tasks.
It may then need other coordination methods to coordinate these
coordination methods. For example, the orgénization may need to assign
particular tasks to actors to be performed; these task assignment tasks may
themselves be dependent on some other tasks, requiring additional
coordination work to manage those dependencies.
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2 Why a cookbook?

In this section I will suggest why I believe a cookbook is the appropriate
metaphor for my dissertation.

First, like a cookbook author, I have collected a number of recipes, in
my case, recipes for multi-actor action. Lochbaum, Grosz and Sidner (1990)
cite Pollack (forthcoming) who defines a recipe as what actors know when
they know how to do something; therefore, coordination recipes are what
actors know when they know how to coordinate. I believe there are domain
independent coordination recipes, similar in spirit to the weak problem
solving methods described by Newell and Simon (1972); my cookbook will be
a collection of some of these recipes. Of course, the analogy to a recipe should
not be taken literally or pushed too far; nevertheless, I feel it is the
appropriate metaphor for my dissertation.

In most cookbooks, the recipes are written in a way that makes it clear
what ingredients are needed and provides a consistent description of the
required operations. Similarly, I have developed a language for writing
coordination recipes, drawing on techniques developed for modelling actors
in distributed artificial intelligence systems.

Most cookbooks organize their recipes into categories such as entrees,
appetizers or desserts. The categories of coordination methods I describe
include, for example, choosing tasks to achieve organizational goals, choosing
actors to perform the tasks and managing different kinds of dependencies
between tasks. Ibelieve that other coordination recipes can easily be added to
these categories. As with a cookbook, future researchers may not agree on
these exact categories, but even if the precise divisions change, the broad
outlines are likely to remain the same.

At a more _detailed level, certain recipes are composed of simpler
components. For example, a pie includes a pie crust and a filling; many
entrees are composed of some kind of meat and a sauce. I have similarly
decomposed some coordination methods; for example, choosing an actor to
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perform a task involves identifying which actors could perform the task,
selecting a particular actor and getting that actor to do the task.

Within each category of components, a cookbook may suggest a
number of alternatives, providing, for example, a selection of meats, sauces,
pie crusts or fillings. The cookbook may help by suggesting which choices fit .
together well (e.g., a cherry pie and a flaky pastry crust) or identifying
exceptions to the rules (e.g., an entree that needs no sauce). Similarly, in the
organizations I studied I have identified, for example, several ways to identify
actors (e.g., by knowing a particular actor or by asking someone else, including
the actors themselves) and to choose between them.

Many cookbooks suggest how particular dishes fit together in a
consistent menu. Though beyond the scope of this thesis, I am investigating
what I call coordination strategies, that is, consistent patterns of coordination
methods. For example, one approach to coordinating a group is to identify all
necessary tasks and dependencies and create a plan addressing them that tells
each actor what to do, thus eliminating the need for the individuals to
coordinate themselves. An alternative approach is to ensure that each actor
has the necessary knowledge to determine for itself the correct actions it
should take.

Finally, like any cookbook, my collection of recipes is incomplete. My

cookbook includes the coordination mechanisms I observed in the

~organizations in my study, but the individuals I studied certainly did many
things other than coordinate and other kinds of organizations may be
coordinated in ways I have not yet observed. In particular, I focused on the
coordination of on-going processes in established work organizations; it
seems likely that additional recipes will be necessary to describe individuals
working in other kinds of environments.

2.1 Uses of a cookbook

Even with its limitations, a cookbook is useful. Similarly, I believe that
the recipes in my cookbook will be useful as a basis for analyzing an existing
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organization or suggesting alternative organizational structures. For
example, in my framework, choosing a particular engineer to work on a
change to a part and a supplier to build the new part are both examples of the
same coordination task (choosing an actor to perform a task) even though
they are typically handled quite differently. This analysis suggests at least
examining the implications of treating engineers as if they were suppliers and
vice versa.

Knowing about different recipes is particularly useful when the raw
materials and processes available suddenly change. We are going through
such a change now, as computation and communication become orders of
magnitude cheaper. For example, having a collection of the recipes people
customarily eat would be useful if we try to imagine how these foods would
change if microwave ovens suddenly became widely available. At first, these
new tools might be used only for simple adaptations of existing recipes,
providing a faster way to make such traditional dishes as baked potatoes,
popcorn or oatmeal. As people developed more experience with the new
tools, however, one would expect to see entirely new kinds of dishes that take
advantage of the special characteristics of microwave ovens.

I expect to see similar changes in use of coordination recipes due to the
increased availability of information technology. At first, people will do
more or less the same things, except with the technology. For example, the
initial uses of an electronic-mail system will likely be simply to replace paper
memos or phone messages, without fundamentally altering the way the
organization works. Eventually, however, new forms will evolve that
depend critically on the computer. To some extent, of course, this has already
happened. Most banks, for example, would be unable to conduct business
without their computer systems. 'However, as personal computers become
more widely used, I expect the same to happen to coordination processes
beyond routine transaction processing.
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3 Overview of the thesis

At this point, I will briefly describe the rest of the dissertation and
outline the thesis of this thesis.

3.1 Modelling coordination

In Chapter 2, I review the artificial intelligence literature about
representing actors and actions. Based on these ideas, I present a technique
for modelling the coordination methods of a group performing a complex
task. I focus in particular on coordination knowledge—knowing how to
coordinate—as opposed to production knowledge—knowing how to do a
* particular job, in other words, the additional knowledge an individual
working in a group needs to know to be an effective member of the group
beyond simply knowing how to do his or her individual job.

3.2 Case studies

To test, informally, the utility of the modelling technique and to
develop a typology of coordination needs, I performed a field study of the
coordination processes of three organizations. In Chapter 3, I discuss the
design of the field study I performed and describe how I analyzed the data I
collected.

March and Simon (1958) note in the postscript to their book (p. 212) the
problem of identifying the program that an organizational unit uses from ob-
servation of the behaviour of members of the unit. My approach is to
consider the communications between actors as actions taken by the actors to
carry out a plan and achieve some goal. Therefore, I first record the
communication between actors and the kind of information processing each
actor performs. I then develop models of each actor in terms of its knowledge
about the task domain, the organization and the other actors. These
individual models can then be tested together to ensure that the simulated
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behaviours are consistent with the communications patterns actually
observed.

I chose to study the engineering change processes of three
organizations: an automobile company, a commercial jet aircraft company
and the system software development organization of a computer company. I
chose engineering change processing for two reasons. First, it is a very
coordination-intensive process that requires individuals in engineering and
manufacturing to work together to be effective. Second, change management
is done in some form by all manufacturing companies. The three companies
were chosen partially on the basis of access, but mostly because they seemed to
span a sufficient variety of manufacturing processes to offer interesting
comparisons with enough overlap to provide some replication.

Chapters 4, 5 and 6 present the results of the study in three sites. These
cases also provide the only detailed descriptions of the engineering change
process I know of in the engineering management literature.

3.3 Typology of coordination methods

In Chapter 7, I develop a typology of coordination methods organized
by the coordination needs they meet. This 'typology describes the world in
terms of tasks and objects—including actors—needed to perform and affected
by the tasks. Coordination methods are necessary to manage the relationships
between these items, for example, resolving conflicts between different goals
or assigning resources to particular tasks.

For each element of the typology, I present a variety of coordination
methods and the specific coordination recipes necessary to perform those
tasks. These recipes have been drawn from three sources: from the cases
studies, from considerations of possible distributions of the elements of the
coordination recipes and from the literature.

I conclude in Chapter 8 by summiarizing my findings and discussing
some possible future research directions.
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3.4 Contributions

I believe this dissertation makes three contributions. First, I develop a
technique for representing the knowledge, capabilities and goals needed by
individual actors to perform coordination methods. A key feature of this
technique is that it allows an analyst to reason about ways these items can be
distributed among actors. Second, I develop a typology of coordination
problems based on the kinds of interdependencies that must be managed in a
system with multiple goals, actions and actors. Finally, for each kind of
coordination problem, I have found a variety of coordination methods, each
expressed as a set of coordination recipes.

4 Related work

~ In this section, I will briefly present relevant work from organizational
studies and artificial intelligence and discuss limitations of each body of work
for my study.

The study of coordination lies at the intersection of numerous fields.
One characteristic that distinguishes these different research streams is the
nature of the systems studied. Researchers in organizational studies have
investigated the coordination of systems of human beings, from small groups
to large formal organizations (e.g., Galbraith, 1977; Thompson, 1967).
Economists have studied coordination in markets composed of independent
profit-maximizing firms (e.g., Debreu, 1959). A branch of economics, agency
theory, suggests how costs arise from the division of ownership and control at
many levels of analysis (e.g., Holmstrom, 1979; Jensen and Meckling, 1979;
Ross, 1973). Control theory provides principles for coordinating mechanical
systems made up of separate components; system dynamics applies these
principles to the analysis of many different kinds of natural and man-made
systems. Computer science, and in particular‘ DAI, has recently begun to
investigate ways to coordinate systems made up of interacting processes (e.g.,
Fox, 1981; I—Iewitt, 1986; Huberman, 1988; Miller and Drexler, 1988; Smith and
Davis, 1981).

33



Other disciplines suggest ways that systems can appear to be
coordinated, even though the individual actors act independently and in a
non-purposeful fashion. For example, evolutionary biology and ecology
show how the forces of natural selection can result in seemingly coordinated
systems of animal behaviour (Franks, 1989; Seeley, 1989). Neural networks
exhibit organized activity from the sometimes random actions of very simple
subunits. (I describe these situations as seemingly coordinated because by my
definition of coordination, actions can only be said to be coordinated if they
are taken to achieve some goal; in these cases, it seems forced—although not
impossible—to view the actions as goal-directed.)

I believe that a more integrated view of coordination is necessary
because these various literatures focus narrowly and on different issues.
Agency theory, for example, has as a central concern problems that arise when
more than one person works on a task. The primary focus, however, is how
to solve problems caused by possibly conflicting goals between agents and
principals; it does not address the many problems that exist even when there
is no goal conflict. Past research in organizational studies has focused mostly
on issues of decision making and has not been very specific about the source
of dependencies between tasks or how different coordination mechanisms
work. Research in artificial intelligence has been very formal, but not
necessarily related to human organizations. In its attempts to find -
generalizations that apply across disciplines and across levels of analysis,
coordination theory resembles earlier work on systems theory and cybernetics
(e.g., Beer, 1967; Boulding, 1956; Emery, 1969; von Bertalanffy, 1950; Wiener,
1961).

- Given the large number of potentially relevant bodies of literature, one
key issue I face is where to anchor my research. I have chosen to focus on two
sets of theories. I have drawn first on organizational studies, in particular, on
the Carnegie school and its focus on the organization as a decision maker.
The second body of literature is artificial intelligence, since it provides useful
formalizations of communication and decision making. Also, artificial

intelligence’s view of the actor as a boundedly rational information processor
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is compatible with the assumptions of the Carnegie school. I use the
strengths of these two fields to investigate more precisely how people
coordinate their actions when they work together.

4.1 Coordination in organizational behaviour

The need for coordination has been explored by many organizational
theorists. The usual conception is of a fit between task requirements and
organizational structure, where organizational structure is determined in part
by the coordination requirements. |

411 Coordination as task design and assignment

March and Simon (1958) review early efforts in a field they call
“administrative management theory”. In this field the problem is seen as
designing an organization to optimally perform a given set of tasks. One
formulation of this problem is as an assignment problem: given n people, n
jobs and costs cjj for person i to do job j, what is the cheapest way to assign the
jobs to the people? A more interesting modification of this problem is to
assume a set of activities, {Sj), where the cost to do activity S; is C(S;) and the
cost to do a combination of activities, S; + Sy, is different than the cost to do
them separately (i.e, C(Sy + S2) # C(S1) + C(Sp)). In this case, the problem
becomes one of designing tasks (sets of activities) to be done by individuals to
minimize the total cost necessary to do all the tasks.

Complications arise from the fact that the times are not simply
additive; that is, if there is a fixed setup cost, it is often cheaper for one person
to make two of something than for two people to make one each.
Organizations also place constraints on the kinds of tasks that can be designed.
For example, people in a certain department may work only on specific
activities, such as a particular product (specialization by purpose) or know
only particular processes, such as engineering or manufacturing
(specialization by process). The most efficient partition that can be designed
within these constraints may not be the most efficient of all possible
partitions (March and Simon, 1958, p. 23-24).
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March and Simon (1958) note a key problem with this formulation of
coordination: '
One peculiar characteristic of the assignment problem, and of all the
formalizations of the departmentalization problem in classical organization
theory, is that, if taken literally, problems of coordination are eliminated.
* Since the whole set of activities to be performed is specified in advance, once

these are allocated to organizational units and individuals the organization
problem posed by these formal theories is solved (p. 25-26).

In other words, coordination is more than simply dividing up the work and
assigning it to actors.

4.12 Coordination as choice of actions

March and Simon (1958) go on to offer their own view of coordination,
in which communication between actors may be necessary for several
reasons:

(a) the times of occurrence of activities may be conditional on events external
to the organization or events internal to the organization;

(b) - the appropriateness of a particular activity may be conditional on what
other activities are being performed in various parts of the organization;

(¢) an activity elaborated in response to one particular function or goal may
have consequences for other functions or goals (p. 27).

In this case, “the problem of arranging the signalling system for
interdependent conditional activities is the coordination problem” (p. 28).
March and Simon identified a number of coordination mechanisms that
address this problem.The simplest mechanism is self-containment of task:
one way to simplify a problem is to break it into nearly independent parts so
each subunit can solve one problem without paying attention to what the
others do (p. 151). This compartmentalization has costs, however. March and
Simon (1958) cite research by Marschak and Radner (1954) and Marschak
(1955) that concludes that forms of departmentalization that are advantageous
in terms of self-containment are costly in terms of skill specialization (and
vice versa).
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The division of work by process leads to greater interdependence.
Ways of reducing the interdependence they identified for manufacturing
include using semi-manufactured goods, interchangeable parts and buffer |
inventories. Most manufacturing operations start by reducing highly variable
raw materials to a more homogeneous semi-manufactured good, such as iron
ore to pig iron or cotton to thread. This reduction greatly simplifies the
design of subsequent processes that can assume a homogeneous input.
Interchangeable parts reduce the need for groups to coordinate about the
goods they use, since the fit is assured. Finally, buffer inventories reduce the
need for groups to coordinate the timing of their processes (p. 160).

Ways to increase coordination include schedules and feedback when
things change. Schedules simply spell out the interactions expected between
different groups. When events arise that can not be anticipated and planned
for, groups must communicate changes to plans (p. 160).

As the organization grows, the marginal advantages of process
organization become smaller and the coordination cost grows, resulting in a
shift from process to purpose organizations (p. 29).

4.1.3 Coordination as a response to topologies of interdependence

Thompson (1967) builds on the “Simon-March-Cyert” tradition. He
identifies three kinds of interdependence: “pooled” (each actor contributes to
and depends on the whole); “sequential” (one actor depends on another); and
“reciprocal” (the outputs of one actor are the inputs of the other and vice
versa). These kinds of interdependence are increasingly hard to coordinate

‘because they contain increasing degrees of contingency. With pooled
interdependences, the actors can act separately; with sequential, each must
readjust if the previous one does not do what was expected; and with
reciprocal, all must readjust whenever one changes (p. 55).

Thompson identifies three kinds of coordination, drawn from March
and Simon: “standardization”, “plan”, and “mutual adjustment” (p. 56). He
then equates the requirements of his three kinds of interdependence with
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these different kinds of coordination. Actors who have pooled
interdependences coordinate by standardizing their actions, using rules to
constrain their actions to be consistent with others. Actors who have
sequential interdependences use plans to establish schedules for their actions..
Actors who have reciprocal interdependences communicate new information
during their actions, allowing each to adjust to the other.

Thompson lists the four usual ways of making departments—by
purpose, process, clientele or geographic area—and points out that it is
impossible to form groups that meet all of these constraints at once. He notes
that increased coordination requires increased communication and decision
making, making these mechanisms increasingly expensive. He therefore
argues that the primary coordination mechanism 6rganizations use is to form
departments that group actors to reduce coordination costs. - For example,
actors with reciprocally dependent positions should be placed in common,
more-or-less self-contained groups. Second order groups can then be created,
forming a hierarchy, to address interdependences left by the first order groups,
and so on (p. 60).

Thompson suggests a number of additional structures to provide
further coordination. Groups with pooled interdependences that are not in
the same group use standardization, and add liaison positions between the
standardizers and the groups. Groups with sequential interdependences not -
covered by departmentalization use committees to accomplish the remaining
coordination. Groups with reciprocal interdependences not covered use task-
forces or project groupings (p. 61). As an example of this approach,
Thompson analyzes the structure of a bomb wing in terms of the
interdependences between different groups (pp. 61-65).

414 Coordination strategy depends on organizational type

Mintzberg (1979) takes the view that there are certain configurations of
organizational variables that are most likely and thus appear as a fit between
the organization and the environment. One such variable is the kind of
coordination used. He identifies five kinds of coordination: 1) mutual
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adjustment, 2) direct supervision and standardization 3) of work processes,

4) of outputs and 5) of skills. Mintzberg claims that each mechanism is most
often found in a particular kind of organization and environment. In
particular, sixhple structure organizations use direct supervision, the machine
bureaucracy uses standardization of work processes, the professional
bureaucracy uses standardization of skills, the divisional form uses
standardization of outputs and the adhocracy uses mutual adjustment.

415 Coordination strategy depends on level of interdependence

McCann and Galbraith (McCann and Galbraith, 1981) suggest that
‘coordination strategies vary along three dimensions—formality,
cooperativeness and localization—and that as dependency increases, the
amount of coordination necessary increases and as conflict increases,

" coordination strategies chosen become increasingly formal, controlling and
centralized. They therefore propose a two-by-two matrix showing conditions
under which organizations will choose to coordinate by rules, mutual
adjustment, hierarchy or a matrix structure, but they do not describe the
coordination processes themselves in any more detail.

4.1.6 Coordination as patterns of information processing

Early authors are often rather vague about what the coordination
mechanisms they identify do. The information processing (IP) school
suggests that these mechanisms are useful because they increase the
organization’s information processing capacity. Tushman and Nadler (1978,
p. 292) outline three basic assumptions of IP theories:

(a) organizations must deal with work-related uncertainty;
(b) organizations car fruitfully be seen as information processing systems; and
(c) organizations are composed of individual actors.

In this view, organizational structure is the pattern and content of the
information flowing between the actors and the way they process this
information. Tushman and Nadler (1978) go on to hypothesize the need for a
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fit between the organization’s environment and its information processing
capacity.

Galbraith (1974; 1977) expands on their work, explicitly considering an
organization’s need to process information to reduce environmental
uncertainty and strategies by which it could achieve this goal. He suggests
four strategies: 1) increased slack and 2) creation of self-contained tasks, as
ways to decrease the need for information processing and 3) creation of lateral
ties and 4) vertical information systems as ways to increase the organization’s

capacity.

4.2  Coordination in artificial intelligence

The design of distributed computer systems raises a number of
interesting coordination issues. The following three example systems
illustrate a range of approaches to these problems.

421 Communication through a shared blackboard

The Hearsay-II speech understanding sys"cem (Erman, et al., 1980) uses a
blackboard model for coofdinating independent actors, each with specialized
knowledge about a problem (in this case, speech recognition). The actors
communicate through the blackboard, a common data structure on which -
actors post results or preliminary hypotheses which can be used as input by
other actors. For example, actors processing low-level sound data can post
hypotheses about the phoneme being uttered, which can be used by other
actors to make guesses about the word. Other actors can then check that the
hypothesized word makes sense or suggest alternative hypo-theses which
should be tested. The blackboard structure allows great flexibility in the
construction of modular systems combining diverse sources of knowledge
(Barr and Feigenbaum, 1981, p. 343).

4.2.2 Task assignment through contracts

Contract nets (Davis and Smith, 1983) are a mechanism for the
cooperative solution of problems by a decentralized and loosely coupled
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collection of problem solvers. Davis and Smith focus on the issues of
partitioning and decomposition, rather than assuming a partitioned task; in
particular, they do not assume that actors start with a map of the subproblems
and their interdependencies. Complications arise from the fact that actors
have only a local view of the problem but global coordination is necessary.

To solve this problem, Davis and Smith use the metaphor of a group of
human experts working together on a novel problem and design a problem
solving protocol that the actors follow. Each actor independently works on
some part of the problem. If the actor needs more resources (for example,
special hardware for a particular kind of problem or just additional processor
time) it can put the task up for bids by broadcasting a description of the task.
Free actors can bid on the task, indicating, for example, how long they
estimate they would take to complete it. The first actor chooses an actor based
on the bids received and assigns the task (or perhaps decides to continue
working on the task itself). Assignment is thus based on an interaction
between caller and respondent, rather than the caller or the respondent
simply choosing the next actor or task.

4.2.3 Partial global plans

Partial global plans (Durfee and Lesser, 1987) are a way for independent
actors to work together on common goals. Each actor makes plans at a high
level of abstraction, showing what it intends to do, and exchanges these plans
with other actors. Based on these plans, actors can identify goals they share
~ with others and build partial global plans to achieve those shared goals. For
example, if two actors are working on overlapping problems, they can decide
when to share partial results or to reorder the tasks they perform.

4.3 Conclusion

Earlier authors in organizational behaviour note such key factors as the
limited rationality of human beings, which lead them to consider explicitly
the way people and organizations gather and process information. Their
analysis, however, emphasizes factors such as the steps involved in decision-
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making and does not focus much at all on the amount and kinds of
communication between different actors. As a result, they are generally
vague about why coordination is necessary and how coordination is actually
achieved.

In general, the authors I have considered do not define coordination.
March and Simon (1958) are most explicit; most simply give example of
problems requiring coordination and a list of mechanisms.

The assumption that organizations choose an optimal strategy is a
general problem with models that hypothesize a fit between structure and the
environment. If one assumes only that organizations choose a satisfactory
system, then prediction becomes much more difficult (March and Simon,
1958, p. 145-146), particularly because it is unclear what it would mean for a
system to be satisfactory. Gresov (1988) notes that misfits may also occur
because the environment may change after the organization is designed and
organizations have trouble shifting quickly and completely to meet new
environments.

Finally, these authors are not specific about how the mechanisms they
describe provide coordination. Thompson (1967), for example, mentions
committees as a means of coordinating groups, but he does not say what the
committees do, who should be on them, what they talk about—in short,
exactly what committees do to coordinate. While the mechanisms suggested
are certainly useful and used, it is difficult to gauge the extent of their
applicability. In particular, it is unclear how computer systems can be used to
help provide coordination or what mechanisms will be useful in"
coordination-intensive organizations.

The research in Al is in many ways in an opposite state. Definitions of
coordination and interdependence and descriptions of coordination |
mechanisms are very formal, because the algorithms must be sufficiently
precise to be computerized. However, the problems attempted typically have
fairly simple interactions and operate in a well-understood environment.
Furthermore, researchers can design systems that concentrate on solving only
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the actual problem, taking the creation of the organization and of
understanding the problem largely for granted.

My approach to studying coordination merges the strengths and avoids
the weaknesses of these two disciplines. Focusing on coordination problems
and coordination methods provides a more precise definition of
coordination. Models of the information-processing behaviour of
individuals in organizations, as discussed in Chapter 2, provide a more
specific way to describe these mechanisms. Studying real organizations, as
discussed in Chapter 3, provides a rich source of data to ground theory
development.
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MODELLING COORDINATION

What Al has to contribute to psychology is exactly this
experience with modelling processes.

—Schank and Abelson, Scripts, Plans, Goals and Understanding
Recipe language is always a sort of shorthand in which a lot of
information is packed, and you will have to read carefully if you

are not to miss smalf but imporiant points.

—Child, Bertholle and Beck, Mastering the Art of French Cooking
“Contrariwise,” continued Tweedledee, “if it was so, it might be;

and if it were so, it would be; but as it isnt, it ain't. That's logic.”

—L ewis Carroll, Through the Looking Glass

Developing techniques to study how members of groups coordinate their
actions is the first contribution of my dissertation. My approach is to observe
organizations in action and develop models of the actors in the organization in a
knowledge-based formalism (in principle, in enough detail to be executable on a
computer).

1 Why model?

One method other information-processing-based disciplines use to gain
insight into complex behaviours is to imagine how a computer could be
programmed to reproduce them. Computer models of organizaﬁons can provide
at least three benefits for the study of coordination in organizations.

First, models provide formal representations of assumptions about the
process being modelled. In cognitive psychology, for example, computer models
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of learning or memory embody theories about human information processing
and can be used to generate further empirically testable hypotheses. Cyert and
March (1963) take this approach to the study of organizations. In their analysis
of the processes firms use to make pricing decisions, the “process is specified by
drawing a flow diagram and executing a computer program that simulates the
process in some detail” (p. 2). In this sense, a model of the process is a statement -
of a hypothesis about how the organization behaves.

Cyert and March point out an important difference between models built
in the physical and social sciences. In the physical sciences, the properties of the
subunits are usually known to some high degree and the modeller is interested in
the properties of the whole system. For example, a meteorologist might attempt
to predict the weather (a system property) using a model that describes the
properties of the oceans, the atmosphere, etc. In social sciences, however, the
researcher can usually observe the whole system and is instead interested in
hypothesizing about the behaviour of the subunits and the relations between
them. The procedure is to construct a model that specifies the behaviour of the
subunits and check that the model exhibits the same behaviour as the system (p.
317). '

Second, models can be used to abstract from and sirhplify complex
systems such as the organizations I studied. As Yourdon notes, “we can
construct models in such a way as to highlight, or emphasize, certain critical
features of a system, while simultaneously de-emphasizing other aspects of the
system” (1989, p.65). Artificial intelligence research and in particular the
developing field of distributed artificial intelligence (DA, e.g., Bond and Gasser,
1988b; Gasser and Huhns, 1989; Huhns, 1987; Huhns and Gasser, 1989) can
- contribute interesting formalisms for understanding and representing the actions
of human organizations.

Finally, computer systems provide a much more tractable method than
field studies for investigating certain questions about organizations. For
example, it is possible to perform true experiments comparing systems of
coordination using computer models (e.g., Durfee, 1988). In a sense, DAI is (or
can be) an experimental branch of organizational science.
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2 What to model

All models include only selected aspects of the observed phenomena and
omit many other possibly important elements. This simplification is necessary:
if the models are not simpler than the system they represent, then there is little to
be gained by studying them instead of studying the system itself. The choice of
factors to include or to omit depends on which behaviours of the system you
wish to model and on the assumptions you make about the system.

The choice of behaviours to model obviously depends on the questions
you hope to answer with the model. The choice of a set of assumptions is a more
difficult problem. The truth of an individual assumption is in some ways
irrelevant; some simplifying assumptions may be very useful despite being in
point of fact inaccurate.. (If, however, the models are fundamentally different
from the system, then in some ways it is only a coincidence that the behaviour of
the model and system are the same.) The best test of a set of assumptions is
whether models built using those assumptions exhibit behaviours similar to the
system in ways that provide useful insights.

The development of physics provides a good example of these issues.

- Philosophers such as Aristotle concentrated on the obvious physical fact that
things in the real world stop moving unless you keep pushing them. As a result,
they made only limited progress in understanding the world. Newton succeeded
in progressing much further by hypothesizing an obviously impossible
frictionless world as a basis for his laws of motion and adding friction as a
secondary force.

I hope to make some progress by similarly ignoring true but difficult-to-
model facts about the world and concentrating on some parts I do understand.
This done, some complex omitted issues may clarified by what I learn.

The key issue in modelling is the choice of which elements of the observed
phenomena to include and which to omit. Which variables should appear in the
model? How should they appear? What are the appropriate values? Different
modellers have chosen different answers to these questions. To suggest which
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features are important to include and which are unimportant details, it is
necessary to have a strong theoretical view of the organization.

In the remainder of this section I will present the assumptions about
organizations, individuals and the organizational context that underlie my efforts
to model coordination processes. '

21 Information processing view of organizations

As discussed above, coordination seems to be primarily an information-
processing task. For my study I therefore adopted the information processing
(IP) view of organizations (e.g., Galbraith, 1977; March and Simon, 1958;
Tushman and Nadler, 1978) because of its focus on how organizations process
information. In this view, organizational structure is the pattern and content of
the information flowing between the actors and the way actors proééss this
information. For example, McKenney, Doherty and Sviokla (1986) performed
such an analysis in a software firm, tracing the flow of information and drawing
flow charts to describe the processing involved in certain tasks.

The major problem with this approach is that the concepts discussed are
still very aggregate. Earlier researchers viewed information almost like a fluid,
and uncertainty, its lack. An organization’s structure then is like plumbing that
directs the flow of information to where it is needed to reduce uncertainty. Such
general factors are, as Galbraith noted, very difficult to measure. Such
simplifications are useful for general studies, but permit only general
conclusions. A more detailed analysis would attempt to characterize the content
of messages that comprise the flow of information and examine the processing
that these messages require.

I make such an analysis. Instead of looking simply for the presence of
information or uncertainty, I attempt to identify the content and purpose of the
messages being exchanged and the actions that these messages trigger in the
agents. Itherefore examine the sources and users of data, the types of messages
sent and received, and the actions actors take when they receive certain
messages.



Like other information processing theorists, I treat organizations as a
collection of intercommunicating acfors, where in principle the actors can be
human beings, computer systems or any other kind of information processor. (In

‘the organizations I studied, the actors are most often human beings.) The
individual actors who make up the organizations are assumed to be intendedly
rational problem solvers who communicate (and take other actions) in order to
achieve their individual and organizational goals. My assumptions about the
individual actors are largely those of information processing psychology
(Newell, 1979; Newell and Simon, 1972).

However, simply modelling the communication and information-
processing alone would be insufficient. Such a model could not explain why the
actors communicate as they they do and not in other equally plausible ways. As
Newell and Simon (1979) noted in their analysis of individual problem solving,
the flowcharts they made of individuals’ processes just appeared, with no real
explanation as to their origins. | -

Also, since such a model captures only on-going communications, they
can not fully analyze organizations where actions have become routinized. In
these cases, much of the interesting communication may have taken place in the
unobserved past with coordination at time of observation dependent on the
actors’ shared agreements.

To make the coordination mechanisms more visible, my analysis must
overcome these limitations, as Newell and Simon (1972) did with their
abstraction of problem spaces. I therefore seek to model the unobservable goals
that (presumably) lead to the observed communications.

2.2  Simplifying assumptions

In general, coordination of a group of actors may be complicated by the
fact that actors are not perfectly rational (indeed, they may frequently act in
apparently irrational ways). Actors without perfect memories, for example, may
need to do additional work to ensure that they actually perform the actions they
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plan to. Groups of actors may not share the same goals or even a common

language.

However, studying routine tasks performed by individuals in work
organizations allows me to make several key simplifying assumptions.

Actors have defined roles. I model actors in the organization in terms of the
actions they take in response to a small set of different kinds of messages and
assume that their capabilities are known to the other actors. March and Simon
argue similarly, noting that to simplify the world, organizations use a setof
standard responses, a classification of cues and rules to map cues onto responses
(1958, p. 164). Furthermore, organizations often come with roles that define
kinds of messages understood by the person in the role, ways of processing
messages and expectations about tasks to be done.

Furthermore, a good deal is known about the special abilities and
characteristics of members of the organization. As March and Simon point out,
roles in formal organizations tend to be, “highly elaborated, relatively stable, and
defined to a considerable extent in explicit and even written terms. Not only is
the role defined for the individual who occupies it, but it is known in
considerable detail to others in the organization who have occasion to deal with
him” (p. 4).

Actors have a shared language and use defined communication channels. 1
assume that communication between actors is mostly reliable. In particular, I do
not worry about the need for actors to translate messages, but rather assume that
they can quickly recognize that a message is of a particular type. For routine
tasks, communication between actors seems to be mostly reliable. SinceI am
focusing on coordination rather than communication problems, I choose not to
emphasize these issues and to handle them simply where they do arise.

For the kind of organizations I studied, this focus seems reasonable.
Actors in formal organizations use a common language for task-related
communication. As March and Simon note, formal organizations differ from
other groups in that they are more specific with respect to channels of
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communication and content of communications. Communication between
members of the organization is by means of special and precise common
technical languages (1958, p. 164).

Actors are cooperative. Finally, I assume that actors are essentially co- |
operative, that is, that their goals mostly do not conflict and when asked to do
something, they do it. For the kinds of routine tasks I studied, this assumption
seems reasonable. Task-related goals are usually not questioned; instead they are
accepted as part of the actor’s role in the organization and requests consistent
with these roles are accepted. Organizational goals are internalized, to various
degrees, by the individual actors.

3 My approach to modelling coordination processes

A large number of techniques have been developed to represent processes.
For example, Marca and McGowan (1988) present a technique called SADT™ (for
Structured Analysis and Design Technique) which represents processes and the
things that flow between them by boxes connected by arrows. Standard
textbooks, such as Yourdon (1989) describe many other techniques, including
flow charts and data flow diagrams.

These techniques are certainly useful for describing processes and, as I
describe in the next chapter, I use a similar technique in the initial stages of my
data analysis. However, because these techniques do not explicitly represent the
goals of the process but only the actions taken, they make it difficult to reason
about alternative ways to achieve the same goals.

I therefore draw most heavily on research in distributed artificial
intelligence (DAT) for techniques to represent the actors and the goals they
attempt to achieve. Representing actors and their knowledge is a very active
research area in DAI and it seems clear that techniques developed in this area can
be applied to modelling human organizations.

Tadopt the reductionist view that groups of actors do nothing more than
what the individual actors do and focus exclusively on modelling the
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information-processing behaviour of the individual actors that comprise the
organization (Prietula, et al., 1990). I model each actor as an independent goal-
directed problem solver. Each actor is assumed to have its own knowledge about
the world; actors can communicate but do not directly share memory. Each actor
independently attempts to achieve its goals, given the state of the world as it
knows it, by taking actions that affect that state.

Much of the work in representing actors has been directed towards the
development of autonomous actors and many of the issues studied are important
for implementing simulations of organizations. For the purposes of this thesis,
however, I am concerned initially with simply developing a language for
describing organizations, so I will mostly gloss over questions of implementing
the kind of reasoning I describe. Ibelieve that the models I develop could be
implemented with some extra work, but I do not take this step in this thesis.

3.1 A brief introduction to logic

Each actor is modelled by a set of well-formed formulas in first-order
predicate calculus, extended as needed. Using logic as a basis for a
representation scheme is widespread and although it is not universally accepted,
itis sufficient for my purposes and I will not examine the alternatives here. (For
a better defence of the utility of logic see Hayes, 1977; McDermott, 1978; Moore,
1982). It should be noted that none of my results depend crucially on the use of
logic as a representation.

In this section, I will briefly describe first-order predicate logic. This
description is based on Davis (1990, Chapter 2).

Formulas in first-order logic are composed of constant symbols, variables, -
function symbols, predicate symbols, Boolean operators such as A and v, and the
quantifiers, V and 3. Constants, variables and functions are called terms;
predicates, Boolean combinations of formulas and quantified formulas are called
formulas. The arguments to a function or predicate must be terms, not formulas.
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For example, in the blocks world1(Winograd, 1972), constants include the
table and various blocks A, Band C (table, a, b, ¢); functions include the colour
or weight of a block (colour (Block), weight (Block)). Predicate symbols,
representing relationships between terms, include the fact that one block A is on
top of another block B (on (a, b)) or that the top of a block is clear
(clear (Block)). Asa second example, the fact that an actor has some object is
represented by the two-place predicate have (actor, object). (Inthese
examples, atoms in lower case (such as table, a, b, c) are consfants; atoms in
upper case (such as Block) are variables.)

We represent the fact that all blocks are red by the quantified formula:
VBlock: block(Block) = colour (Block) = red;
that some block is on the table by:
dBlock: on(Block, table).

A variable that appears in the context of a quantifier is said to be bound; I adopt
the convention that unbound variables are considered to be universally
quantified.

Sorted logic. In general, functions and relations are only defined on objects
of a particular sort. For example, in our blocks world, only blocks have a weight;
the table (let us assume) does not. To simplify expressions by eliminating the
predicates necessary to assure that all variable are of the correct sort, I will use a
sorted logic (Davis, 1990, p. 44-45), which is similar to a typed programming
language. The arguments to each function and relation and the value of each
function will be declared to be of a particular sort. The sorts of quantified
variables are assumed to be implicitly declared by the functions and predicates in
which they are used (Davis, 1990, p. 45).

1 Ablocks world is a problem domain used in several early Al systems (e.g., SHRDLU
(Winograd, 1972)) consisting of blocks of various shapes and colours on a table, manipulated
(usually only conceptually) by a robot arm.
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Situations. To allow reasoning about the order of events and temporal
constraints, assertions may have different values in different situations.
Following Davis (1990, p. 188) I have modelled varying values as fluents and
varying relations as Boolean fluents or states.

For example, in the blocks world, on (a, b) would be the state of block a
being on block b; colour (a) would be the fluent of the colour of a block. The
predicate true-in (situation, state) asserts that the state holds in the
given situation; value-in (situation, fluent) gives the value of a fluent in
the given situation. Situations are ordered; that is, if situation; occurs before
situations then

situation; < situations.

A situation may be associated with a clock time (value-in (situation,
clock-time)) to allow reasoning about durations of intervals. We can also talk
about intervals of situations and the value of a fluent during an interval. For -
example,

S € interval = red=value-in(S, colour({a))}

says that block A was red throughout the given interval. start (interval)
and end (interval) are functions returning the starting and ending situation of
the interval, respectively.

In the remainder of this chapter, I discuss the specific elements I have
choosen for my representation language. In particular, I discuss the way I
represent actors” knowledge, goals, and actions and review the literature that led
me to these choices. I draw particularly heavily on work by Morgenstern (1988)
and Davis (1990). I conclude by discussing the format in which I present these
models in this thesis. '

4 Modelling knowledge about the world

Each agent has some set of knowledge, including knowledge about the
world in general, about the problem domain and about the organization and
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other actors. To say that an actor knows some fact is to express a relation
between the actor and the fact known.

1 represent what each agent knows about the world using a representation
such as know (actor, fact). Thisrepresentation can distinguish between
different states of incomplete knowledge (Cohen and Perrault, 1979), such as
agent,’s knowing that:

1) agenty knows that the train leaves from gate 8;

2) agent) knows that the train has a departure gate; and
3) agent, knows what the departure gate is for the train.

In this représentation, these statements can be represented as follows:

1) know (agentq, know(agentz, leaves—from(train, gate 8)});
2) know (agentq, know(agentp, 3IX: leaves-from{train, X)));and

3 know (agentq, 3X: know (agents, leaves-from(train, X)}).

It should be noted that these representations of an actor’s knowledge are
not legal expressions in first-order predicate'calculus, because fact knownisa
formula, not a term. (This restriction applies also to other sentential verbs such
as want or believe.) Furthermore, know must be referentially opague, that is, what
is known depends on the representation of the fact, so equal values can not be
substituted within the expression. For example, Oedipus knows he married
Jocasta: |

know (cedipus, married(oedipus, jocasta)),

but despite the fact that Jocasta is his mother:

jocasta = mother (cedipus),

he does not know ’_chat he married his mother:

~know (oedipus, married(cedipus, mother (cedipus))),

(Davis, 1990, p. 54-55).
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There are two possible solutions to these problems. First, first-order
predicate calculus can be extended with a modal operator, know, and axioms for
reasoning about it. In this case, know (agent, fact) isa valid statement of a
. modal logic (for details, see Chellas, 1980; Davis, ; 1990; Halpern and Moses,
1985)). Alternatively, we can include quotation in the logical language and
represent knowledge by predicates of the form know (actor, ’fact’), where
'fact’ isa string representing the logical statement fact. Using quotation
allows for greater flexibility in what can be represented, but is difficult to
axiomatize consistently (in particular, it is possible to construct self-referential
statements such as “this statement is false”).

Most Al researchers use modal logic, although some have argue for
quotation (Morgenstern, 1988). Since the difference concerns the details of the
semantics of these statements, I will use the former representation, while leaving
open the possibility of using the second approach for actually implementing the
models.

41  Assumptions about knowledge

Given this formalism, we can express what assumptions we will make
about the knowledge of the actors. (This discussion of the axioms of knowledge
is drawn from Davis (1990, p. 375).)

The closed world assumption is that all true facts are known:
¢ = know(actor, o)
and assertions that are not known are known to be not true:
~know (actor., ;p) = ~0Q.
These assumptions are particularly unrealistic and will not be used in this thesis.

Actors are almost always assumed to know a basic set of axioms and the -
transitive closure of their knowledge:

know (actor, @) A know(actor, ¢ = Y) = know(actor, ) .
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In other words, actors know any statement that can be derived from the
statements they know;, or alternately, actors are perfectly rational. This
assumption is also rather unrealistic. However, it turns out to be rather difficult
to model restrictions on rationality (Morgenstern, 1988, pp. 107-111) and so this
assumption is usually kept.

A common assumption is that all facts known by an actor are true (the
principle of veridicality):

know(actor, @) = ¢.

This principle distinguishes knowledge from belief; beliefs may turn out to be
not true. (More accurately, knowledge is true and justified belief, since having a
belief that turns out to be correct by chance, such as betting on a winning horse in
a horse race, should not count as knowledge (Davis, 1990, p. 374).)

This principle seems unrealistic, since actors’ knowledge is often wrong.
To reason in terms of beliefs, however, requires a good model of what it means to
believe something and a method for drawing plausible inferences from beliefs.
These are both rather difficult problems that cannot be solved in this thesis.
Therefore, in my models I will speak in terms of knowledge and monotonic
inferences from that knowledge. For the kinds of processes I am studying, this
approximation is workable, although a more complete theory would include
some system for plausible inference. In the few places where it is important to
indicate that some derivation is only a plausible inference, I will use the notation:

plausible (¢, y)

meaning that given that ¢ is true, it is plausible that y is true, without going into
the details of how this inference should be implemented (Davis, 1990, p. 101).

Actors are often assumed to know what they know, the principle of
positive introspection:

know (actor, @) = know(actor, know{actor, ¢)) .
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Without this assumption, it is difficult for an actor to reason about what
information it needs to perform an action. Actors are sometimes assumned to
know what they do not know, the principle of negative introspection:

~know (actor, @) = know(actor, ~know(actor, ¢))
but this assumption is unrealistic for real world problems and will be dropped.

The problems that arise from this set of assumptions are more serious for
automating reasoning about knowledge than for simply representing it. These
issues must be resolved before the models can be used as the basis for a
computer simulation of an organization, but for the purposes of this thesis, they
will generally be overlooked.

4.2  Organizational knowledge

As a basis for communication, actors need models of the organization that
let them reason about their interactions with other actors. For example, to know
to ask another actor for help, actors must be able to reason about other actors’
knowledge and capabilities. In the examples discussed in the introduction,
customers know about the capabilities of the response cénter; the various
intermediaries know which engineer can fix particular kinds of bugs; and
software engineers know about each other’s responsibilities.

Gasser and Rouquette (1988) suggest viewing an organization as a set of
settled (and unsettled questions) about the beliefs actors have about each other.
In their view, the basic problem is deciding which actors do what and when.
This problem can be resolved either through on-going problem solving or on the
basis of conventions and routines (i.e., settled questions).

Issues in representing actors in organizations are reviewed by Bond and
Gasser (1988a). They suggest that each agent must know the capabilities and
responsibilities of other agents; resources available and demands on the
resources; the extent of progress towards a solution; how to communicate,
including knowledge of available channels, languages and protocols; what
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information will be useful for other agents and should be communicated; and the
other agents’ beliefs, goals, plans and actions.

In order to work together, the individual actors need to know the task the
organization is performing, the the particular subtasks they are doing, the re-
lationships between that subtask and others and the capabilities of other actors in
the organization. For each task and organization, the precise information
required will vary.

For these reasons, I therefore model each actor’s goals, capabilities and
knowledge about task domain and its own mental models of the capabilities of
other actors. Essentially, I attempted to reverse engineer the coordination (and
production) knowledge actors use from the messages they send to other people.

5 Modelling actors’ goals

A goal is a desired state of the world, stated as a formula in predicate
calculus. For example, in a blocks world, a goal might be to have blocks a, b and
¢ in a stack on the table, that is:

on{a, b) A on(b, ¢) A on{c, table).

For a car company, the goal might be to produce a certain number of car objects
during the year. In the examples from the cases, customers can be viewed as
having the goal of getting a fix for a problem. Goals should be distinguished
from constraints, such as the need to produce the cars with the available
equipment or personnel.

I assume the actors have known goals they are trying to achieve. (As
discussed above, this assumption seems reasonable for the kinds of organizations
I'wish to model.) To allow the actors to be able to reason about their goals and
about ways to accomplish them, the goals must be explicitly represented by a

-statement such as:

want (actor, goal).

59



Furthe_rmore, we will assume:
want (actor, goal) = know {(actor, want (actor, goal))
that is, actors know what their goals are.

The set of goals held by the individuals in an organization can be viewed
as a goal hierarchy. At the top of the hierarchy are broad organizational goals
shared by all members of the organization, such as making cars ormoney. These
goals are not operational, however, that is, they do not directly translate into
actions that an individual actor can carry out.

Instead goals must be decomposed into subgoals that when achieved
achieve the gdal. For example, making cars may be divided into steps such as
designing cars and manufacturing them; making cars itself is probably only a
means to achieve the higher goal of making money. These subgoals are
themselves realized by progressively more specific subgoals. At the bottom of
the hierarchy are goals which can be directly achieved by individual actors, such
as preparing a drawing of or manufacturing a particular part. These achievable
goals are usually referred to as actions; my representation of actions is discussed
in the next section.

Exactly which goals are considered actions depends on the purpose of the
analysis: for example, organizational designs are usually stated in terms of the
actions of work groups while time-and-motion studies decompose actions down
to the level of individual body movements.

Once a goal is decomposed into actions, the different actions can be
assigned to actors. This assignment may be done in a hierarchical fashion; a
high-level subgoal may be assigned to some organizational subunit, which
further decomposes the goal and assigns particular actions to individual
members of the subunit. Subgoals held by different parts of the organization
may sometimes conflict. For example, design engineers may want to improve
the quality of the product by fixing every problem, but plént engineers may want
to optimize the performance of the plant by minimizing the number of changes
introduced. In addition, individuals may hold individual goals which are
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unrelated to (and possibly conflict with) the organizational goals. I will not
consider these individual goals in more detail in this thesis, but in general it is
obviously important to consider how individual and organizational goals
interact.

51  Where do goals come from?

Most planning systems have been “one-shot”; the goal state is given and
the problem is simply to develop a plan to achieve the goal. For my models, an
actor’s goals are not fixed; rather, actors may adopt new goals based on
communication with other actors or in response to situations in the world. For
example, aisking an actor to do something gives that actor another goal. In the
examples from the cases, I model the customer’s request to the response center as
glving the response center a goal of finding a solution to the problem.

However, I do not consider how the actors acquire their initial set of goals;
rather, I simply model what they are. Wilensky (1983) has done some work in
this regard that could be incorporated in a more complete model. He describes
the implementation of a continuous planning system with a goal detector, which
is responsible for determining that the system has a goal by recognizing
situations requiring some action. The goal detector operates through a
mechanism Wilensky calls a noticer, which looks for relevant changes in the
world or in hypothesized worlds. When a particular situation is found, it
triggers the introduction of a goal. Wilensky notes that these situation-goal pairs
are similar to Schank and Abelson’s (Schank and Abelson, 1977) themes. For
example, a role theme causes an actor to have a goal of performing some task
(like grading exams) by virtue of filling a role which requires it to do such tasks
(such as the role as a professor) (p. 24). This particular situation is very general;
more specific patterns may immediately invoke relevant default plans. For
example, if a student wants to arrange a meeting, the planner for a professor may
immediately suggest planning to meet the student during office hours.

61



6 Modelling actions

Actors achieve their goals by performing actions to change the state of the
world. For example, the action put-on (a, b) results in a state of the world
where block aisonblockb (on(a, b));give(actory, actorsz, object),

the state where actor has the object. As in these examples, actions may be
- generalized action schemas with parameters; e.g., put-on (Block,, Block,) is

the class of actions of putting some block (Block, ) on some other block
(Block,). Specifying the values for the parameters results in an action instance;

e.g., put-on (a, b) is the specific action of putting block a on block b.

6.1 Preconditions

Actions may have preconditions, states of the world that must hold before
the action can be performed.

Physical preconditions. Some preconditions are phjrsical. For example,
before a block can be moved by itself, there must be no other blocks on top of it;
to give an actor an object, the performer must initially have the object.

Knowledge preconditions. Actions can additionally have knowledge
preconditions (Moore, 1979; Morgenstern, 1988), that is, actors must know what
actions to take before they can act. For complex actions, this knowledge includes
knowing a decomposition of the complex action into primitive, directly
executable actions. Since an action may have parameters, actors must know the
parameters to perform even primitive actions. Moore (1979) gives the examplé of
an agent frustrated in its attempts to open a safe by dialling the combination
because it does not know the combination (or which safe a combination opens).

Skill preconditions (e.g., being able to do something, like read or play
piano) can be treated as part of the physical preconditions for the action, e.g., a
precondition for applying an action read is that the agent satisfies the predicate
reads (Moore, 1979, p. 80). We may assume that only particular actors know - |
how to perform a given action; for example, the response center can lookup a
solution to the problem while the customer can not.
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Strictly speaking,\the knowledge preconditions for an action must be met
only for the action to be done deliberately. For example, an actor with a goal to
go to the largest city in the United States might not know that the largest city is
New York, but might go to New York for some other reason (Davis, 1990, p. 418).
In my study, I focus on deliberate actions; I assume that the knowledge
preconditions must be satisfied before an action can be taken.

Using the knowledge preconditions for an action, an actor can reason
about actions that serve as tests, like using a pieée of litmus paper, from
knowledge of the properties of the action (litmus paper changes colour in acids
or bases) and from a knowledge of the outcome.

Social preconditions. Finally, actions may have social preconditions,
meaning certain social conventions that must hold before an action can take
place. For example, only particular actors are allowed to perform particular
actions; other actions need to be approved before they can be performed.

6.2  The frame problem

One problem with this formulation of actions is what is called the frame
problem. Actions change some aspects of the world (e.g., put-on(a, b)
changes the location of block a) but other aspects of the world are presumably
unaffected (e.g., the location of block b is not changed, nor, for that matter, is the
location of the Eiffel Tower). In general, if actions are mappings from one state to
another, each action must specify what happens to every possible fact in the
world, even seemingly irrelevant ones.

One approach to this problem is the one adopted by STRIPS (Fikes and
Nilsson, 1971). STRIPS represents the state of the world as sets of formulas and
actions as sets of preconditions, adds and deletes. Preconditions are formulas that
must be true for the action to take place (e.g., in order to put one block on top of
another, put-on (A, B), the tops of both blocks must be clear, clear (A) A
clear (B)); adds are formulas that become true as a result of execution of the
action (e.g., the first block is on top of the second block, on (2, B)); and deletes
are formulas that become false, that is, that are removed from the set of true
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statements (e.g., the second block is no longer clear, ~clear (B)). STRIPS solves
the frame problems by assuming that everything not mentioned by an action
does not change. This representation of actions greatly simplifies the problem of
planning a sequence of events to achieve a goal, which can be done by backward
chaining from the preconditions of actions to effects. |

In my models, I use the STRIPS approach and represent actions as sets of
preconditions, adds and deletes. For example, the put-on action discussed
above is represented as: |

|put-on (A, B)

Preconditions: clear () A clear(B)

Adds: on(A, B)

Deletes: clear(B), VX # B: on(a, X)

The give action is represented as:

give (actor;, actorz, object)
Precondition: have(actory, obiject)

Add: have (actors, object)

Delete: have (actor;, object)

In many cases, the actions I discuss only add to the world and do not delete.

6.3 Primitive actions

Some actions are primitive and all actors know how to perform them
directly. I write:

can(actor, action)

to mean that the actor can perform the action.

achieves-goal (actor, goal)

is true if there is some action the actor can perform and the action achieves the
stated goal.



In order to focus on the coordination recipes, I assume two sets of
primitives actions. These are actions I assume the actors can do but which are
not in and of themselves coordination: (1) generic processes required for group
action, such as communication and group decision making and (2) domain
specific actions.

Generic processes are shown in Table 2.1 (adapted from Malone and
Crowston (1990)). These layers are analogous to abstraction levels in other
systems, such as protocol layers for network communications.

For instance, most coordination processes require that some decision be
made and accepted by a group (e.g., which actors will perform which actions).
Group decisions, in turn, require members of the group to communicate in some
form about the goals to be achieved, the alternatives being considered, the
evaluations of these alternatives, and the choices that are made. This
communication requires messages be transported from senders to receivers in a
language that is understandable to both. Communication actions are discussed
in the next section.

Finally, the establishment of this common language and the transportation
of messages depends, ultimately, on the ability of actors to perceive common
objects, such as physical objects in a shared situation or information in a shared
database. '
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6.3.1 Representing actions as capabilities

Most task knowledge in my models is expressed abstractly as the ability
for certain actors to transform some input state into an output state. For
example, software engineers are modelled as being able to determine which
module has the problem (the output state) given a set of symptoms (the input
state).

Knowledge and capabilities are in some sense interchangeable as a
representation. Instead of simply saying that an actor can perform some task, we
could, in principle, work out in detail the knowledge necessary to do it. In fact,
knowledge engineers do exactly this when they develop an expert system. For
the purpose of these models, however, such detail is usually unnecessary. Itis
important to know, for example, that software engineers can locate problems in
particular modules (and that other actors cah not); it is not essential to know in
detail how they do that. Representing this bit of task knowledge as a capability
greatly simplifies the development and representation of the model. Alternately

Table 2.1. Processes underlying coordination.

Process Level Components Examples of Generic Processes
Coordination - goals, actions, actors, identifying goals, ordering actions,
resources, assigning actions to actors, allocating
dependencies resources, synchronizing actions
Group decision-  goals, actors, proposing alternatives, evaluating
making alternatives, alternatives, making choices (e.g., by

- evaluations, choices  authority, consensus, or voting}

Communication  senders, receivers,  establishing common languages,
messages, languages selecting receiver (routing),
transporting message (delivering)

Perception of actors, objects . seeing same physical objects,
common objects | accessing shared databases




stated, I have chosen a rich ontology of primitive actions because I do not wish to
provide a full set of axiomatization for them (cf. Morgenstern, 1988, p. 8).

Furthermore, capabilities are an important part of the models actors have
of each other. In Site A, for example, Marketing engineers know that software
engineers can locate problems in modules, but they do not know in any detail
how this is done. Nevertheless, they can reason about how to take advantage of
this ability.

6.4 Complex actions

Primitive actions can be grouped together to form complex actions.
Composition operators include sequences, conditionals, while loops, and
concurrent actions (Morgenstern, 1988, pp. 127-130). These composition
operators are represented as:

sequence (actiony, actionz),
meaning action; followed by actiony,
cond{condition, true—action,'false—action),

meaning true-action if condition is true, otherwise false-action,

while (condition, action}),

meaning, nothing (the null action) if condition is false, otherwise act ion
followed by another while loop, and

concurrent (actiony, actions),

meaning action; and-actiony starting at the same time; the complex action
ends when the longer of the two actions ends. Versions of sequence and
concurrent can be defined for more than two actions.

Because the organization is composed of multiple actors, multiple actions
may happen simultaneously. For example, an engineer may start a designer
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working on the detailed design for some part while soliciting comments from the
other actors likely to be affected by the change. I model this process by assuming
that actors can send messages and continue without waiting for a reply.
However, I assume that a single actor, working alone, could perform only a
single action at a time. '

Knowing how to do a complex action means knowing a decomposition of
that action into primitive actions. For example, Morgenstern (1988, p. 139) gives
the example of knowing the definition of sharpening a pencil, presented here is a
slightly modified format:

know (actor, equal (sharpen(Pencil, Sharpener),
sequence (put-in (Pencil, Sharpener),

while(~sharp(Pencil), rotate (Pencil)))))

Given a goal, actors must determine what composition of primitive
actions to apply to achieve it. I do not discuss how this planning works; rather, I
assume that given an achievable goal and knowledge of the available actions, the
actor can develop a plan that achieves the goal, that is, actors are assumed to
have an action plan:

plan(Situation, Goal)
Preconditions: know(Actor, Actions)
Adds: know(Actor, Plan) A achieves=-

goal (Plan, Goal, Situation)

There is, however, quite a lot of work on planning that could be included in a
more complete model.

6.5 Where do capabilities come from?

Some actions are primitive and all actors are assumed to be able to
perform them. For example, I will assume that all actors can communicate with
other actors. Other actions may be restricted to a particular group of actors. The
set of actions an actor may take depends on the actor’s role as well as on its



physical capabilities or knowledge. For example, as discussed below, only
particular actors are allowed to approve changes.

For complex action, actors must additionally know a decomposition for
the action. Actors may reuse scripts or stored plans rather than planning from
scratch each time they are faced with a problem. Actors may have developed
and stored these plans or they may have been given them by someone else, e.g.,
during initial training in the job. When a stored plan fails, the actor may aftempt
to revise them, changing what they do to fit the changing circumstance.
Alternatively, actors may be modelled as reactive planners: given a goal and a
situation, actors check their memory for an appropriate action or set of actions to
be performed, repeatedly performing actions until the goal is achieved.

7 Modelling communication between actors

Some of the facts known by an actor come from direct observation of the
world or from prior experience. Many facts and goals, however, come from
communications with other actors, such as the communication between the
customer and the response center or between different software engineers. I
represent the fact that one agent can talk to another by: ‘

can{agent;, talk-to(agenti, agents))

Communication between agents can be included in a planning framework.
Cohen and Perrault (1979) hypothesize that people maintain as part of their
models of the world symbolic descriptions of the world models of other people
and talk in order to take some action on these models. They suggest treating
speech acts (Austin, 1962; Searle, 1969) as actions an agent can perform to affect
their listeners’ beliefs and goals.

There are five different kinds of speech acts: (1) declarative, expressing a
fact; (2) interrogative, asking a question; (3) imperatives, telling a listener to do
something; (4) exclamatory, expressing emotions, and (5) performative, speech
acts that directly achieve some condition, such as pronouncing a couple husband
and wife (Davis, 1990, p. 440). For my models, I need to handle all but
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exclamatory speech acts. Cohen and Perrault (1979) define actions for
declarative, imperative and interrogative speech acts. I present these operations
here in a somewhat modified form.

71  Dedarative speech acts

Informing an actor of the truth of some proposition prop is represented
by the action inform. Note that this formalization does not allow for lying.

inform(Speaker, Hearer, Prop)

Preconditions: know(Speaker, Prop)

Adds: know (Hearer, know(Speaker, Prop))

This mode! assumes that the hearer understands the request from the
speaker, or, alternately, that there are no language problems. To model problems
caused by differences in language, this action could be replaced by a more
complete model that included the speaker’s translating a goal into a statement in
some external language and the hearer’s interpretation of that statement.
However, for the kinds of organizations studied in this thesis, this model seems
adequate.

This action results only in the hearer knowing that the speaker knows
something; to actually have the speaker know it also requires another step which .
Cohen and Perrault (1979) called convince. They model convincing quite
simply by saying that if an actor knows that someone else knows something,
then it knows it too:

convince (Speaker, Hearer, Prop)

Preconditions: know(Hearer, know(Speaker, Prop))

Adds: know (Hearer, Prop)

This action embodies what is sometimes called the principle of charity: if an
actor knows something, then that something is likely true,

know(Actor, @) = ¢.
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Note that for knowledge this principle is true by definition, but for belief, it is
only a plausible inference (Davis, 1990, p. 362). Cohen and Perrault point out
that a better formulation would requires the speaker to convince the hearer
that prop is true by providing justifications which are eventually grounded in
mutually held beliefs. For my purposes, however, this model of convincing is
sufficient.

7.2  Imperative speech acts

A request from one agent speaker to another hearer to do an action act
is modelled by a request action.

request (Speaker, Hearer, Act)
Preconditions: know(Speaker, can-do (Hearer, Act )

Adds: know (Hearer, want {(Speaker, Act))

Note that this action only results in the hearer’s believing that the speaker
wants the action. To cause the hearer to also want the action, Cohen and Perrault
(1979) hypothesize a step named cause~to-want which models what is
required to convince someone to want something. They model this process very
simply: to get someone to want to do something they can do, one need only tell
that person that you want them to do it.

cause-to-want (Speaker, Hearer, Act)
Preconditions: know(Hearer, want (Speaker, Act)) A

know (Hearer, can (Hearer, Act))
Adds: want (Hearer, Act)

This model of motivation is unrealistic, but I believe it is sufficient to
model the organizations I studied. To model organizations where different
actors have different goals would require a better model of what it takes to
persuade actors to do somethiilg. However, those changes would mostly take
the form of additional preconditions to this action and could thus be handled by
this mechanism.
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7.3  Interrogative speech acts

The inform action allows an actor to say that it knows something.
However, by itself this action is not very useful for asking questions (that is, for
requesting that an actor perform an inform action), since planning for someone
to execute an inform action requires knowing in advance what will be said.
Therefore, there must be another action whose performance can be requested to
ask questions where the speaker does not know the answer to the queétion but
can only provide a description of the answer.

Cohen and Perrault (1979) handle this case with a new action informref,
which is given a predicate of one variable. The information requested is an object
which makes the predicate true. For example, if an actor asks “Where is Tom?”,
it wants the value of X that makes 1ocation (tom, X) true. In this
formalization, AX: d (X) means a function taking one variable X and returning
the value of the predicate d (X}, either true or false; 1X: d (X) means the value X
for which d (X) is true. informref is defined as:

informref (Speaker, Hearer, AX: d(X))

Preconditions: IY: know(Speaker, 1X: d(X) = Y)

Adds: J¥: know(Hearer, know(Speaker,
wX: d(X) = Y))

Using this action a speaker can request that a hearer perform an
informref action, providing a description of the desired object in the form of a
predicate to be satisfied. For example, to ask “Where is Tom?”, the speaker
performs the following action: |

request(speaker, hearer, informref (hearer,
speaker, AX: loc(tom, X)))

When the hearer performs the requested informref action, the speaker then
knows the object that hearer knows satisfies the predicate. To complete the
performance of this action requires a new mediating action, convinceref:
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convinceref (Speaker, Hearer, AX: d(X))

|Preconditions: 3Y: know(Hearer, know(Speaker,
X: d(X) = Y)

Adds: JdY: know(Hearer, 1X: d(X) = Y)

Cohen and Perrault (1979) define a similar pair of actions for asking yes/no
questions, where the communicated value is a simple Boolean.

7.4  Performative speech acts

The final class of speech acts are performatives, where a speech act results
in some action due to some agreement between actors. For example, the speech
 act of pronouncing a couple husband and wife itself changes the state of the
world, due to sodal convention (Davis, 1990, p. 440). Performative speech acts
are the way actors satisfy the social preconditions of actions.

For my study, I need to model occasions where one actor must have some
proposed action approved by another actor. In these cases, the approving actor
does not actually “do” anything more than sign a form; but the process can not
continue without this approvél. Imodel such approval process by assuming that
- certain actors could assert that a particular object, such as a change, had been
approved:

approve-change (Performer, Change)

Adds: approved-by (Performer, Change)

Only certain other actors can perform this action and change this state. Other
actions then have: '

approved-by (manager, Change)

as a precondition.
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3

STUDY DESIGN

..accurate descnpt:on and verification are not so crucial when
one 's purpose is to generate theory... evidence and testing never
destroy a theory... they only modify it.

—Glaser and Strauss, The Discovery of Grounded Theory

In order to informally test the power of my modelling technique and to fill

out my typology of coordination methods, I used it to study a coordination-

intensive task performed in three large companies. In this chapter, I describe this
field study. I first discuss the implications of my choice of research
methodology, namely case studies. Ithen present the particular task I chose to
study, engineering change management, and the sites in which I studied it. I
describe what data I collected at these sites and how I collected and verified it. I
conclude by outlining the steps I follow to develop a model of the organization
from the data collected, including an example of the analysis of a brief section of
an interview.

1 Case study methodology

A research question can be studied using many different research
methodologies. Each methodology has unique strengths and weaknesses,
making it more or less useful in different circumstances. My goal in this thesis is
the development of a theory of how coordination works in organizations and a
technique for studying it. I approach these questions through the use of case
studies of a coordination-intensive process in human organizations. I chose case
studies because they provide rich empirical data, necessary for theory

_generation.
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Newell and Simon (1972) use cases studies of individuals solving crypt-
arithmetic problems to suggest how humans process information. In their cases,
they use the performance of an individual on a task to develop a model of the
information processing involved, resulting in a theory of individual problem
solving. I similarly generate a theory of coordination by modelling the way
individuals in organizations coordinate a particular task.

In the postscript to their book, March and Simon note questions about the
status of field research and single case studies of an organization (p. 12). Since
they wrote, however, researchers have better defined the utility of this research
paradigm. In particular, Yin (1984) notes that case studies are particularly
appropriate for answering “how” or “why” questions about current events in
situations where the researcher has no control over the circumstances of the
study.

For answering specific questions about “how many” or “how often,”
where the goal is to be predictive, survey methodologies usually offer better
coverage of the study population and greater external validity. For the current
study, however, I want to investigate the mechanisms through which
coordination is being provided and the circumstances that make those
mechanisms appropriate.

If the study concerns past events, some form of archival research or
historical research is more desirable. In this thesis, however, I study coordination
as it was currently provided.

| Finally, if researcher has control over the events of the study, an
experimental methodology may be more appropriate since it assures better
internal validity. Iam interested in coordination in large organizations, however,
where I have little or no control over events. Future studies may involve an
intervention in the organization in the form of a computer system designed to
help coordinate. In this case, a quasi-experimental design may be more
appropriate.
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One methodological issue affecting the choice of case studies is their
potential lack of external validity. It is often difficult to tell how much can be
generalized from any particular case study. In this study, I address this concern
by studying multiple case sites and comparing my findings across them. It
should be noted, however, that my goal is mostly to suggest a new framework
for thinking about organizations; as such, I am not suggesting that all
organizations work the way I describe.

Another issue concerning a case study methodology is what intellectual
framework will discipline the selection and interpretation of observations. I
address this issue with the modelling technique described in Chapter 2. In some
cases, it may not be possible to fully specify the models, but attempting to do so
provides a check on the completeness and consistency of the information
collected. As Cyert and March (1963) note:

The likelihood that a process model will incorrectly describe the world is high,

because it makes some strong assertions about the nature of the world. There are

various degrees by which any model can fail to describe the world, however, so it

is meaningful o say that some models are more adequate descriptions of the

world than others... that the agreement cannot be attributed to mere coincidence.
(p. 319).

The process of developing a model for an organization is discussed below.

2 Task selection

I this section I will describe the particular task I chose to study, namely,
engineering change processing and my reasons for choosing it.

In designing my study, I want to ensure that the cases selected can be
-meaningfully compared and yet are different enough to suggest an interesting
range of coordination mechanisms. This goal places several constraints on my
selection of cases.

First, because my definition of coordination depends on the goals of the
organization being studied, T held the task constant. Allowing the task to vary
might result in a greater variety of coordination processes, but it would be much



more difficult to isolate the reasons for the differences observed. Second,
studying the same task results in some economies for the researcher, since the
processes have some similarities.

Second, selecting a single task keeps the level of aggregation constant,
avoiding that limitation of my definition of coordiation. Examining a single
process provides a clear definition of the subset of relevant people to study.
McGrath (1984) defines a group as having, “interaction, interdependence, mutual
awareness, a past and an anticipated future”(p. 6). The groups I studied are
long-term, limited-band natural groups, which he calls crews or work teams (p.
44), except they may be larger, with the result that members of the group may
not know all other members. |

21  About engineering changes

The process I chose to study is the engineering change management
process, that is, the process used by companies which design and manufacture
products to control changes made to the product’s design.

A product design process typically goes though several stages. In the
earliest stages, the design is worked on mostly by members of the engineering
department. In order for the product to be produced, of course, other groups,
such as purchasing or manufacturing, must be involved. At some point,
therefore, the design is released, which means that design documents describing
the product are made available to the other groups. For my thesis, I focused on
changes made to the design after it had been released. I did not address changes
made to the manufacturing processes, tooling, or any of the many other aspects
of the production process, or changes made during the development of a new
design before the initial release.

Engineering changes include three distinct kinds of changes: (1) corrective:
fixing errors where the system does the wrong thing, e.g., a bug in some
calculation in a computer program} (2) adaptive: making the system do
something different in response to changing needs, e.g., changing calculations to
conform to new tax laws or adding new functionality; and (3) perfective: making
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the system do the same things better, e.g., increasing performance (Lientz and
Swanson, 1980). We can also distinguish between changes made in response to
new needs and those made in response to changes in the underlying system (e.g.,
new hardware or a new version of an operating system).

In different industries different kinds of changes méy be common. For
example, most companies need some process to make corrective changes to fix
unanticipated design defects. However, companies differ in how they manage
adaptive or perfective changes. In some companies these other kinds of change
- are addressed primarily by designing a new product, or at least a new version of
the product. For example, car companies make adaptive and perfective changes
primarily between model years of a car. Other companies, such as the
commercial jet aircraft company, introduce new versions of their products only
rarely; in these companies, all three kinds of change are handled by the same
process.

2.2 Parts

Complex products of the sort I studied are assembled from simpler
component parts. Parts vary in complexity. Some are simple items, such as a
moulded piece of plastic, a pressed sheet metal body panel or a standard nut or
bolt.. Others are complete subassemblies, such as a radio or even an entire
engine. For Car Co., one of my case sites, a part is the smallest unit designed by a
Car Co. engineer and assigned a Car Co. part number. Two parts are the same
and have the same part number if they have the same fit, form and function,
meaning that they can be interchanged without effect. (Fit means the parts fit the
same attachments; form means the parts fit within the same design space; and
function means the parts meet the same design specifications. Note that the parts -
need not be completely identical to be interchangeable.) If the parts can not be
freely interchanged, then they are different and must be assigned different part
numbers. The part numbers are important, since the use of a part can be tracked
only by part number.
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Clark (1989) distinguished between three categories of parts: (1) detailed
control parts, where the automobile company does most of the design and
detailed engineering and the supplier acts mostly as a source of manufacturing
capacity; (2) black box parts, where the automobile company supplies a
functional specification and the supplier does most of the detailed engineering
and manufacturing; and (3) off-the-shelf parts, where the supplier does the basic
design and engineering for a part and the automobile company buys them, per-
haps with some modifications.

2.3  Stages in implementing engineering changes

In order to bound the process somewhat and make the study feasible, I
have chosen to focus on the design engineer, or more precisely, on the
information processing done by the design engineer.

This focus suggests a tri-part division of the change management process.
First, the engineer determines that some kind of change is necessary, e.g., by
receiving a report of some problem. Second, the engineer develops a change,
verifies that it is acceptable and has it formally approved. Finally, the change is
implemented and the pfoduct modified, e.g., by the production plant after the
engineer releases a new set of drawings. In my study I focused primarily on the
first and second of these three Steps. | | |

Obviously these subtasks interact. For example, the organization of the
design engineers in the second subtask dictates how a problem report must be
routed to achieve the first subtask. Nevertheless, examining each subtask
independently does have some advantages. First, if we can identify a subtask as
an example of some generic coordination task, we can begin to analyze it and
suggest alternative ways this task could be organized. Second, it provides a
structure for comparisons of the process in different companies.

24  Engineering change control

Given that changes to the design will be necessary, nearly all companies
choose to implement a change control process to control the changes. Typically
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what are controlled are the documents describing the product, such as drawings
or interface specifications. The product is supposed to match the documents

describing it (the production processes may go to great lengths to ensure this), so
- if the documents do not change, the product should not either.

The purpose of a change control process is, as one interviewee said, to
prevent changes to the product. More accurately, the process is intended to
ensure that only good (e.g., necessary, well thought out, cost-effective, etc.) _
changes are made. Change control is typically imposed only after the product is
stable enough that frequent changes should not be necessary and other divisions
have begun to work with the design, increasing the cost of a change. Often,
however, the decision to start the change control process is as much a result of
timing as of any intrinsic property of the product. The products I studied were
already subject to change control at the phase I studied them.

There are several reasons for having a change control process.

Approval. One important reason is to record the formal approval of the
change by the engineer. Engineers are legally responsible for their designs, and
all changes to those designs must therefore also be approved by them.

Ensuring design is consistent with engineering intent. A key problem for
engineering is ensuring that a product can be reproduced as designed. The
design as documented must stand by itself, since the design engineer will not be
present to explain it. A goal of a change control process is to ensure that all
changes made to the design are accurately and unambiguously reflected in the
documentation and that all changes made are intentional. All stages of the
design must be similarly controlled. For example, the design process of an
automobile must document what parts were used in each car in case of a recall.

Informing users of the design. Any changes made by an engineer need to be
made visible to the downstream group who will implement them. Many other
aspects of the assembly process may need to change at the same time as the
design. For example, someone must ensure that any necessary new parts,
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assembly processes or tools will be ready at the same time. This is only possible
if all groups are properly informed about any changes.

Controlling costs. A final reason for a change control process is to control
the costs of changes made. Changes can be expensive in many ways. Some costs
are direct, such as the cost of an engineer’s time to redesign a part, of new tooling
or the obsolescence of existing parts. Others are indirect, such as the reduction in
the productivity of the assembly plant caused by any change in the process. In
some cases, the costs outweigh the benefits of the change. Each change requires a
business decision to ensure that the costs are justified. Often this involves an
additional approval process, since there is often a perception that engineers are
more interested in getting a perfect design than one that is cost-effective and
therefore introduce unjustifiable changes to improve their design.

2.5 Whystudy change management?

I believe the engineering change process provides an instructive
microcosm of organizational coordination issues and is well suited for my study
for several reasons.

First, the process is one that requires coordination. For simple products,
this process may be very simple; for example, if the product is made by a single
person, he or she may simply make the next one a little differently. If the design
and manufacturing are done by different groups, however, coordination is
required between the designer and the manufacturer to communicate the desired
changes. For very complex products, there may be hundreds of designers and
many groups affected by a change in the design. In these cases, the change
control process may require a very large amount of coordination. Even within
the same firm, different parts seem to require different kinds of coordination.
For example, interviewees in several companies have commented on the
difficulty of managing changes to electrical wiring and hydraulic piping,
components that often link systems designed by different groups.

Second, the process is one that could be supported more effectively with
an information system. For instance, the Information Lens (Malone, et al., 1987)
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or Object Lens (Lai, et al., 1988) system might be useful, since much of the data
exchanged is (at least) semi-structured and subject to fairly straightforward
processing rules. Infact, many companies seem to be implementing computer
systems to support engineering data management (e.g., “Engineering made
easy”, 1990).

Third, the restricted nature of my model suggests studying situations
where the processing is done in a routine fashion, to reduce issues of |
interpretation by the members of the organization. Managing engineering
changes is primarily an information-processing task, often with developed
formal procedures (at least once a change has been developed), and the goals of
the individuals working on it seem fairly clear.

Fourth, the process is significant in many manufacturing industries and is
one that many companies feel they could do better. Reducing the need for
changes and the cost of making changes may be key to improving the flexibility
and responsiveness of manufacturing organizations. Companies spend millions
of dollars making changes to their products, so even small improvements in the
process could result in large cost savings.

Finally, there seems to be surprisingly little prior research on this topic.
For example, a quick survey of books on engineering management (e.g., Coxe,
1980; Hilton, 1985; Leech, 1972) revealed that most covered the topic in a page or
less.

3 Case site selection

In this section I will discuss my criteria for choosing research sites in
* which to study engineering change processing and briefly describe the
companies I have selected.

The first question is how many sites to study. Ichose to study only three
sites, for two reasons. First, I am mostly concerned with generating interesting
ideas about coordination processes and demonstrating my research
methodology. Iam not attempting to prove or disprove a particular hypothesis,
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which would require a much larger sample size for conclusions to be statistically
significant. Second, focusing on a few companies allows each one to be
examined in greater detail.

It is important to note that I am not systematically surveying all possible
organizations. Rather, I focus on a few sites with an interesting mix of products,
production techniques and change processes, a technique sometimes referred to
as theoretical sampling. This approach somewhat limits the range of
coordination mechanisms I expect to observe. In particular, I do not expect to
find organizations with completely unsuccessful mechanisms, because such
organizations would have to quickly change or go out of business. I have no
particular reason to suspect that the sites I chose are atypical. Nevertheless, this
selection technique does suggest caution in generalizing from my findings and
highlights the need for more systematic studies to confirm my results.

T applied several criteria to my selection of case sites.

Complex products. I want to study companies that make complex products,
for two reasons. First, the complexity of the products implies a need for many
engineers and downstream groups, so the coordination cannot be done entirely
in face-to-face meetings. Second, I want products that require changes with non-
local effects. I started my search by listing complex products-—such as cars,
computers and jet aircraft—and companies that manufactured them. As another
way to locate appropriate companies, I looked for companies with many
engineers and high spending on research and development (“R & D Scoreboard”,
1988, p. 140). |

Interested companies. Obviously, an important pragmatic requirement is to
find companies that are interested in the research. This criterion may introduce a
selection bias, since companies interested in the study might also be more active
adopters of new management techniques. Companies that feel their change
management processes work badly might be unwilling to be studied and in fact
that seems to be the reason one potential site chose not to participate.



Variety of industries. In order to introduce some variety into the
engineering and production processes examined, I studied organizations in a
variety of industries. Varying the industry gives the case sites a range of ofga-
nizational structures and environmental conditions.

Different need for changes. One aspect that varies is the need for
engineering changes. For some products, eliminating changes is a reasonable
goal, since most unplanned changes are implemented to fix engineering errors or
problems in the manufacturing process. In other industries, however, products
must be extensively tailored for each customer, making a certain number of -
changes inevitable. In most industries, the product is constantly being improved,
but these improvements are introduced in different cycles.

Different production processes. Another way the sites differ is in production
process. Some products, such as automobiles, are mass produced on assembly
lines. Others, such as commercial aircraft, are custom built in small batches.
Computer software is a one-of-a-kind design effort, with relatively small
production costs {e.g., Lotus has a policy that no product should cost more than
$5 to manufacture!). These production processes affect the difficulty of making
changes. For example, making a change to a computer program is relatively
straightforward, once the problem is identified; making even a minor change to
an automobile may require weeks of retooling.

Different degree of control of changes. Finally, organizations differ in the
extent to which they can control their work flows. According to Ashby’s Law of
Requisite Variety?, an organization needs one policy lever for each
environmentally determined variable. Therefore, groups in environments with
many exogenous variables should have more developed ways of controlling for
those variables. For example, car companies determine the timing of changes
themselves; aircraft manufacturers, by contrast, are subject to a constant demand

1 Personal communication from a former employee.
2 This was suggested to me by Mike Epstein.
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for changes from their customers. This law suggests that aircraft manufacturers
need more developed mechanisms to control the flow of change requests.

Perceived problems with changes. Although I do not use it as a selection
criteria, some sites have greater perceived problems with their change control
processes. For example, a common perception was that too manychanges are
being made. Also, some of the organizations are experiencing additional stresses
that affect their ability to manage changes. For example, some have recently
reorganized their engineering groups; in one, the experience level of the
engineers has dropped significantly. I believe these cases can be espedially
enlightening, since they suggest more dramatically what coordination is
necessary, as well as showing how increased production can substitute for the
missing coordination.

3.1  Brief summary of sites
3.1.1 Site A: Computer Systems Co.

 Site A is computer company at which I studied the design of computer
systems software, such as an operating system and database system. The field
work at this site was carried out by me and by another doctoral student, Steven
Brobst.

The software design group is relatively small, so it is possible to |
coordinate the activities of the group informally.‘ Individuals simply remember
who uses the modules they wrote and when they need to make a change, talk
directly o those people. The size of the group is growing and groups in other
sites are starting to use the software, however, increasing the difficulty of
coordinating changes. When we visited, a system was being planned that would
automate some of the tracking of users that had formerly been done by the
engineers. Also, the organization underwent several reorganizations while we
were studying them, some of which appear to be linked to changes in the
product environment.



3.1.2 Site B: Car Co.

Site B is a division of a large automobile manufacturer. This division
designs several models of expensive (about $35K) cars built in relatively small
numbers (200,000 to 300,000 per year). The field work at this site included about
10 days of interviews of people in downstream organizations plus about 5 days
of observation of engineers at work.

The engineering group in this site involves hundreds of engineers, divided
into seven functional groups. Engineers are largely responsible for determining
what changes they want to make. These changes then have to be approved by
the managers of the engineering group. Once a change is approved, a fairly
elaborate change control process ensures that the downstream groups implement
“engineering-intent.” Coordination between different engineering groups seems
to be mostly informal or through physical models of the car.

3.1.3 Site C: Airplanes, Inc.

Site Cis a manufacturer of commercial aircraft. I spent about sixteen days
at this site. Some of this time was spent becoming familiar with organization and
some in interviews with people involved in the change contro! process. 1 also
observed the meetings of three different change control groups.

The engineering group involves several hundred engineers divided by
function, e.g., payload, structures and propulsion. Engineers again determined
what changes they want to make. In addition, customers request changes which
require additional design effort. Changes need the approval of both the chief
project engineer and of the “Superboard” which included most of the top
management of the company. A group within engineering, called Engineering
Change Control, oversees the progress of changes from an engineer through the
approval process and to manufacturing, who are responsible for implementing it.

4 Data collection

In this section, I describe the way I collect data about engineering changes
at my field sites. I attempt to uncover, in March and Simon’s (1958) terms, the
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programs used by the individuals in the group. March and Simon suggest three
ways to uncover these programs: (1) interviewing individuals, {2) examining
documents that describe standard operating procedures or (3) observing |
individuals. I was able to use all three processes in my study.

Data collection starts by identifying the different types of actors in the
group being studied. Identification of the different types of groups in the
organization is done with the aid of a few key informants, and refined as the
interviews progressed.

I then identify the information received by each kind of actor and the way
each type of message is handled. Information about the kinds and sources of
messages received, the way they are processed and the recipients of messages
sent is primarily obtained from interviews with individuals in each group. This
information is summarized in an information-flow model of the organization.

It is interesting to note that the process found frequently differs from the
formally documented process. For example, at one site, engineers receive a
listing of all approved changes, but the official list seems merely to confirm that
the changes have been approved. In order to react to a change, the engineer
must be warned of it well in advance of its appearance on the official list. This
warning seems to happen primarily through an informal process. Itis this
informal process I seek to document.

411 Data collected

I collected three major kinds of data: interview data, observational data
and documents describing jobs.

4.1.1 Interview data

Most of the data collected for this study came from semi-structured

- interviews with various members of the organization. As March and Simon
(1958) point out, “most programs are stored in the minds of the employees who
carry them out, or in the minds of their superiors, subordinates or associates. For



many purposes, the simplest and most accurate way to discover what a person
does is to ask him” (p. 142).

Data is collected by asking subjects: (1) what kinds of information they re-
ceive; (2) from whom they receive it; (3) how they receive it (e.g., from telephone
calls, memos or computer systems); (4) how they process the different kinds of
information; and (5) to whom they send messages as a result. {(An outline of the
questions asked is included in Appendix 1.) Ibehaviourally ground these
questions by asking interviewees to talk about the events that have recently
occurred and using those events as a basis for further quéstions. For example, I
asked some individuals to go through their in-boxes and describe the different
kinds of documents they found and what they do with each one (e.g., Brobst, et
al., 1986; Malone, et al., 1987).

Interviews typically last a minimum of one hour and in some cases as long
as three hours. In Appendix 2, I present an excerpt from an interview at
Airplanes Inc., the third of my case sites.

Some researchers (Bernard, et al., 1985; Bernard, et al., 1980) show that
individuals often forget some communications and over-remember others. These
effects distort communication data gathered by simply asking interviewees who
they talk to and how often. Freeman, Romney and Freeman (1987) show that this
bias does exist but tends to emphasize long-term communications. As Ancona
and Caldwell (1990) put it, “respondents are not actually answering the question
‘Whom did I speak to in the last two weeks’ but ‘In a typical two week period,
with whom am Ilikely to have spoken’.” Since I am interested precisely in these
long-term patterns, I chose the simpler method of directly asking people about

" their communications.

4.1.2 Other data

I also collected data about: (1) the types of information stored in computer
systems; (2) the use of computer systems; (3) names on memo distribution lists;
and {4) the kinds of forms used. '
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Another source of data is material that describes standard procedures or
individual jobs. March and Simon (1958) suggest that these documents are
created for three different reasons: (1) as instructions for the individuals doing
the job, (2) as descriptions for new members of the group and (3) to legitimize or
formalize the procedure (p. 142). They note that the interpretation of these
documents depends on the purpose it was intended to serve. |

4.1.3 Observational data

Finally, to get a better sense of the kinds of communication individuals
actually use, I observed some individuals during the course of a typical work
day. For example, in one site I tailed an engineer for a day, during which I sat in
on scheduled and unscheduled meetings and took notes about the kinds of
people the engineer interacted with and the types of information exchanged.

4.2 Validation of data

Relying on interviews for data can introduce some biases. First, people do
not always say what they really think. Some interviews were conducted in the
presence of another employee of the company, so interviewees may have been
tempted to say what they think they should say (the “company line”), what they
think I want to hear or what will make themselves or the company look best.
Second, individuals sometimes may really not know the answer.

Some of these biases can be controlled by cross-checking reported data
with other informants. For example, if one interviewee reports sending
information to a particular group, I can check if that other group reports
receiving such information.

Furthermore, the modelling process serves as another check on the
consistency of the data. I used an iterative approach, sometimes called the
negative case study method (Kidder, 1981), switching between data collection
and model development. The initial round of data collection serves as the basis
for an initial model. Constructing this model reveales omissions in the data, for
example, places where it was not clear how an actor reacts to some message or
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from whom a particular piece of information comes. These omissions or
ambiguities serve as the basis for further data collection.

Despite possible problems with the data, I feel that this collection
technique is appropriate for my study. I am interested in what is supposed to
happen in the change process and I have no reason to believe that subjects were
deceiving me about what they did. Furthermore, the goal of my data collection is
not to document precisely how engineering change process works in these
companies (although I believe I have done that) but rather to collect raw material
for the development of a theory about coordination processes. In some sense, the
validity of the particular data that serves as the basis for this theory is irrelevant
to the validity of the theory itself. As Glazier and Strauss (1967) put it, “accurate
description and verification are not so crucial when one’s purpose is to generate
theory... evidence and testing never destroy a theory... they only modify it” (p.
28). '

5  Analysis technique

As discussed in Chapter 2, I seek to understand the organizations I study
by constructing models of the behaviour of the actors in those organizations. The
goal of this modelling is to describe the knowledge and capabilities of each actor
(resulting in what I call intentional models, since they capture the intentions that
lay behind the individuals’ actions); however, as I describe in this section, I first
abstract the information-processing behaviour of the individuals by constructing
what I call information-flow models and then use those models as a basis for
constructing the intentional models.

5.1 Information-flow models

I want a more succinct description of the communication that makes it
clear what kinds of information is exchanged, where the information comes from
and goes to, and how different kinds of actors process it. In an earlier study
(Crowston, et al., 1987), I approached this problem by developing what I now call
information-flow models. These models are similar to data-flow diagrams (see,
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for example, Yourdon, 1989) or the structured analysis and design technique (see
Marca and McGowan, 1988). Because the coordination is achieved through
communication, the coordination mechanisms being used leaves particular
patterns in the observed communication flow.

Information-flow models comprise two major elements: actors and
messages. Actors send messages to other actors. When an actor receives a
message, it takes some action, which may include sending additional messages to
other actors. Each kind of actor understands and reacts to a different set of
messages. I use the term “message” here in an abstract sense that includes any
kind of communication, verbal as well as paper or electronic.

Messages may be passed in a variety of media and I do not differentiate
between media in terms of the effect of the message. For example, engineers
often communicate with each other in face-to-face meetings; they release
information about a new part by filling out a form and delivering it to a
specifications clerk; purchasing gets the new information as a change in a
database record. These examples show the variety of media used, but all are
interpreted as messages.

For each type of message, I determine how the actors processes the
information and what kinds of messages (if any) they send in response. I then
describe the communications links between actors and the kinds of messages that
are sent on each link. This modelling is typically an iterative process: identifying
the response of one actor to a message may lead to the identification of other
message types or suggest new kinds of actors who are involved.

For example, there might be a number of individuals designing parts of a
car, all working in roughly the same way and using the same kinds of
information; each would be an example of an “engineering actor.”
Manufacturing actors use different information and would be analyzed
separately. The engineering actors receive notifications of changes in other parts

from other engineering actors or of problems in building their parts from
manufacturing actors. |
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When engineering actors receive change notices, for example, they first
determines if the change described might require changes to their parts, using
their knowledge of the interactions between parts of the automobile. If it does, |
the engineering actors make the necessary changes. They then determine which
other actors might be affected by their changes and send their own change
notices to those actors and to the downstream organizations responsible for
implementing the change.

The product of this analysis is a specification of the details of the types of
messages and the behaviours of the actors, similar to a program written in an
object-oriented language (e.g., Goldberg and Robson, 1983; Stefik and Bobrow,
1986). In principle, this model can be given in enough detail to construct a
computational model of the organization. The object-oriented metaphor suggests
creating a hierarchy of actor types as a way to simplify the description of
different actors and to highlight their similarities; this method was used in
Crowston et al. (1987). In presenting the model, I give only a description of the
different types of actors (the classes) and the actions they take for each kind of
message they understand; I do not present a full instantiation of the model. A
working simulation would have an object of the appropriate class to represent
each actor in the modelled organization.

5.1.1 Development of information-flow model

In this section I describe the process of creating an information-flow
model from the sample interview shown in Appendix 2.

First, I identify the types of actors involved in the process. In the
interview, the subject mentions several actors, including the customer, the
customer engineer, business management, IE people in operations, the “lav.”
(lavatory) vendor and the Change Board.

Next, I determine what messages the actors send one another. I then
specify what processing the actor does when it receives each type of message and
in particular, what other kinds of messages it sends and to whom the messages
are sent. In this example, the customer sends requests to the customer engineer
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(lines 5-14 and 17-18); the customer engineer turns the requests into CR proposals
and sends them to business management (lines 41-42); business management
negbtiates with IE (industrial engineering) for a date by which the changes can be
committed and gets a line position (lines 117-120). The customer engineer then
develops the customer detailed specification which is used to develop the statement
of work (lines 167-169).

This brief excerpt leaves open many questions, such as: Who develops the.
statement of work (mentioned on lines 157 and 158)? Where does it go? Who
else sees the CR proposal and the customer detailed specification? These
questions would be addressed in further interviews until a relatively complete

model can be prepared.
5.1.2 Example of an information-flow model

The resulting portion of the information-flow model is shown in
Appendix 3. Note that this is only a fragment of the full model and includes data
from other interviews and sources not discussed above. Details of the processing
of some messages has been omitted; for example, information about Test
Integration, Engineering Cost and Schedules and Weights has been left out. The
full model is given in appendix to Chapter 6.

Each eniry in the table shows the action taken by a particular actor in
response to a particular type of message from a particular sender. Reading
across, each line shows what type of actor sends the message, what message type
is sent, what type of actor receives the message and what action is taken by the
receiving actor. In some cases, although not in this example, the name of the

‘message is shown in bold italics; this indicates that the message name is the same
as a form actually used by the company studied.

The numbers on each line are not in any particular order; rather they serve
to identify actor-message units. They are used, for example, in the actions to
cross-reference where a message sent by one actor is processed by another.
Several messages may have the same action, such as when an actor needs to
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collect several messages before proceeding; in this case the action is shown once
and the other entries in the table refer to that entry using the line number.

Where no sender is shown, the action is one taken spontaneously (or at
least, for reasons outside the boundary of the model) by the actor. For example,
on line 1, the model shows that the customer decides (for unmodelled reasons)
that it needs some feature and sends a request for the feature to the customer
engineer.

This excerpt shows the messages in roughly the order they are sent or
received. The models in the rest of the thesis group all messages understood by a
particular actor together and are in alphabetical order by actor.

The model shows (on line 2) that the customer engineer, in response to the
message sent by the customer, pi'epares a Change request work statement, and
sends a request to the project engineer to classify the change, that is, to indicate
roughly how much work is involved in making the change. Once the project
engineer responds (line 27) the customer engineer then distributes the change to
various other groups for input and sends the change package to the Change
Review Board. '

The Change Review Board determines if the change can be offered in the
time available (line 3), based on input from the various other groups (not shown).
If it can not be offered, a Change Request Rejected message is sent to the customer.
Otherwise, the change is sent to the customer as a Proposal message.

The customer then decides (line 15) whether or not to accept the proposal
(i.e., if the change is worth the price requested) and sends the appropriate
message to the contract group. If they accept (line 17), the contract group tells
the customer engineer (line 19), who updates the Customer Configuration and
informs the project engineer.

Currently, the models I have developed are represented simply as text.
This technique is unsatisfactory for developing complex models, since it provides
no support for, for example, checking the consistency of a model or actually
. executing the model as a simulation. Furthermore, the text is not very-
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perspicuous. Given the similarities of my modelling technique to existing
structured analysis techniques, I am interested in possibility of using a CASE tool
to help manage the models or perhaps developing a custom tool based on the
Object Lens system (Lai, et al., 1988).

5.2 Intentional models

I next model what each actor must know in order to process messages in
the way shown, using the modelling approach developed in Chapter 2.

521 Level of detail

In order to reason about the possible effects of their actions, actors need
mental models of their actions and the things they act on in the world. To be
complete, my models of the actor must include these mental models.

However, the actors’ mental models can be constructed at different levels
of abstraction. For example, in describing the processes involved in making a
change, I say simply that the engineer develops a proposed solution to a
problem. In more detail, this involves locating the problem, identifying its cause,
thinking of ways to remove the cause, etc. Each step could be further
decomposed, if desired; for example, locating the problem might involve
recreating it, gathering more information about how often it occurs, etc.

There is nothing about any particular level of decomposition that makes it
the correct level of analysis; rather, some level will be sufficient to model the
particular phenomena in which we are interested. Picking an appropriate level is
mostly a pragmatic decision. I want to be able to model at least the organizations
observed, so tasks need to be decomposed at least to the level observed. For
example, if we noticed that a designer was the one who actually prepared the
revised drawings, we might want to treat that task separately. On the other
hand, if we were primarily interested in the interactions between the engineering
department and the rest of the company, we might be satisfied representing both
departments as black box and ignore these steps. Sorne actions might be divided
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even further, for example, to represent a division of labour that seems possible
and interesting but which was not actually observed.

In principle I would like to describe these models in enough detail for a
model of the actors simulated on a computer to actually solve the same problems
that the actors do. For most real world cases, however, this implementation is
difficult and time-consuming to do. Particularly for a thesis, there is a tradeoff
between the time spent impiemenﬁng the models and the time spent analyzing
them.

In this thesis, I am mostly concerned about the interactions between the
design engineer and the rest of the company. For this reason, I do not model
much of the rest of the company. Furthermore, I am not attempting to model the
entire thought processes of an individual engineer; I therefore model individual
problem solving quite simply, going into detail only where the details have an
effect on the engineer’s interactions with other actors. In most cases, therefore, I
will model the actors’ domain knowledge and actions at a more abstract level
and focus instead on the coordination processes.

For example, automobile engineers know a great deal about the structure
of the particular car on which they are working, the production processes used to
manufacture and install their parts, the qualities of the materials used, etc. In
~order to fully reproduce the communication necessary to solve a problem a
model may reqliire many details about the problem as well as as some difficult-
to-characterize “common sense.” My focus on coordination allows me to avoid
some of these issues, since I can cut off the modelling process at the individual
level and simply assume that the actor can solve the problem. However, in some
cases a great deal of domain knowledge is necessary in order to be able to
coordinate; for such cases, the models must be equally complex.

5.2.2 Development of intentional models

To develop a model for an actor, I first look at the actions the actor |
performs and describe them as some kind of transformation. For example, in the
excerpt, the customer engineer can translate customer requests into change
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request work statements (CRWS) (line 27 of the information-flow model); the
change review board can determine if a proposed change can be offered (line 8 of
the model). The intentional model for the actor then includes the ability to
perform theses transformations. Again, actually performing the transformation
requires a considerable amount of (mostly unmodelled) domain specific
knowledge; the model merely states that the actor is capable of performing such
an action. The models developed from the samplé information-flow model are
shown in Appendix 4.

The model for the customer engineer includes an action such as the
following;:

can (customer—-engineer,

develop-crws (customer-engineer, Change))}

develop-crws (Performer, Change)
Effect: JCRWS: have(Performer, CRWS) A
change (CRWS) = Change

This is read as follows: the customer engineer can perform an action called
develop-crws, given a change object as a parameter. Performing the
develop-crws action has no preconditions (aside from knowing how to do it
and knowing the change to which to do it) and has the effect that the actor
performing the action has a crws object and that the change field of that object is
equal to the original change.

The model for the change review board includes an action such as the
following:

can (change-review-board,
check-offerability (change—-review-board, CRWS))

check-offerability (Performer, CRWS)
Effects: know (Performer, offerable (CRWS)) v
know (Performer, ~offerable (CRWS))

I next look at the other actors to which the actor sends messages and
determine why messages are sent to those actors. For cases where an actor
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spontaneously sends a message, developing the model includes hypothesizing a
goal that the actor is attempting to achieve by sending the message. In cases
where an actor takes some action in response to a received message, receiving the
message is assumed to cause the actor to develop a new goal. For example, by
the definition of the request action (see Chapter 2), an actor receiving a request
has a goal of performing the requested action.

To make the link between this goal and the observed behaviour of the
actor (i.e., the next message sent) is'sometimes tricky. It is often helpful to
consult the interview data for more information on why a message is sent to a
particular actor.

The simplest link is where the action performed is simply the one
requested. For example, the customer engineer sends a Request for classification
message to the project engineer; the project engineer responds by simply
returning a Change classification message (line 26 of the information-flow model).
This can be modelled simply by assuming that the customer engineer performs a
request action such as:

request (customer-engineer, project-engineer,

classify-change (project-engineer, change))
where the classify-change action is defined as:

classify-change (Performer, Change)
Effect: know (Performer, class{Change))

and further requests that the project engineer return the result by performing an
operation such as:

request (customer-engineer, project-engineer,
informref (project-engineer, customer-engineer,
AX: X=class (Change))

The project engineer, on receiving these two requests has the goal of performing
the two requested actions; performing them results in the Change classification
message being returned.
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The model for the customer is a bit more complex, involving a bit of
indirect reasoning about the effects and preconditions of the actions performed
by other actors. Based on the interview data, [ model customers as wanting
planes which inctude particular changes. They know that customer engineers
can develop change proposals, which the contracts group can implement by
building airplanes that include the changes. Therefore, the reason they send
change requests to the customer engineer is to get the change proposals back,
which they can then have the contracts group implement, in order to get the
plane, which is what they actually wanted in the first place.

Finally, it may be simplest to model an actor as simply performing a
multi-step process, one step of which is to send a result to another actor. For
example, the customer engineer, in developing a change proposal, sends the
change request work statement to a variety of groups, including Test Integration,
Engineering Cost and Schedules and Weights (line 27 of the information-flow
model). Rather than assuming that the customer engineer has a model of what
each group does to further the customer engineer’s goals, I assume that the
customer engineer essentially follows a script for preparing a change request that
involves these other groups. '

5.2.3 Example of an intentional model

Each intentional model consists of four sections. The first three sections
list the extralogical components of the models: the sorts (i.e., the types of objects
included), predicates and functions.

The sorts form a hierarchy; this is indicated by “isa” relations. For
example, the fact that a manager is a kind of person is represented by saying

manger isa person.

(I have not formally defined the logic of this hierarchy of sorts, but for my
representation purposes, this informal use is sufficient.) For each sort I assume a
one-place predicate, true of all objects of that sort. For predicates and functions,
the sorts of the arguments are shown. Results of functions also have a sort;
where this is unclear, it is given explicitly.
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The final section presents the knowledge and capabilities of each actor in
turn. (In cases where the actor has a long name, an abbreviation for the name is
used in presenting the formulas for that actor.) Primitive actions are given in a
STRIPS-like notation, as discussed in Chapter 2.
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3-1

INTERVIEW OUTLINE

1

1.1

1.2

1.3

1.4

1.5

1.6
1.7
1.8

2.1

22

Background questions (with key informants)

The first step in the research plan is to choose a particular process and
set of groups to study, with the aid of a key informant, someone who
understands the organization.

 structure of organization

what is the process to be studied

1.3.1 goal of process

who is involved (what groups)
what kinds of information are used
what kinds of support systems exist
what media are used

examples of forms

Individual interviews

background

211 name

2.1.2 jobtitle

2.1.3 position in organization
2.14 describe your job

inputs

221 what kinds of information do you need to do your job?
222 what kinds of information do you receive?

2221  examples
103



2222  example of forms used
2.2.3 how do you get this information?
223.1 from whom do you get that information?
223.2  how often do you talk with them?
224 doyou getinformation you don't need?
225 isthere information you could use that you don't get?
23  processing _
2.3.1 what do you do with the information you get
24  outputs
24.1 to whom do you give information?
2.4.2 what kinds of information?
2421  examples of messages
2422  examples of forms used
24.3 how often do you talk with them?
244 what media do you use? (e.g. phone calls, paper memo)
25  support system
2.5.1 how do you use the system
2.5.2 what kinds of information are on the system
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10
11
12
13

14

15

16
17

3-2

SAMPLE INTERVIEW

Verbatim transcript of part of an interview at Airplanes, Inc. on March 3, 1988

with George, the former manager of Engineer Change Control and Cliff, a former

customer engineer who acted as my liason with the company. (Some phrases

were unclear on the tape; my best guess at these passages is printed in [square
brackets].)

George:

Kevin:

George:

Cliff:

George:

...80 here we've got a detailed, there you got your detailed spec and
the changes that are made when they negotiate with the customer,
okay, is called, it's a CR package, a change request package.

Okay.

When they discuss the standard aeroplane with the customer, the
customer has a wish-list, certain things that he wants for commonality,
for logistics, he brings these things in, plus his own people, his
handling people, his stewardii [sic] want things in a certain place and
so forth, like in the galley, they want the drawers in a certain place,
you know what I mean, so he will request a certain type of, will say, a
lavatory... with certain features in it, in certain places, and then you
gotta go to a lav. vendor to have them make that, okay, now, so, this
would come up for a change like that as a CR, part of a CR package.

CR is change request.

It's a change request, okay, now, when the team comes back, they have
a package, what they call a CR package, and what the engineer does,
the customer engineer, he releases the CR package, when, he, he
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18
19

20

21

23
24

26
27

28
29

30
31
32

33

34
35

36

37
38
39
40
41
42

Cliff:

George:

Cliff:

Kevin:

George:

Kevin:

George:

Kevin:

George:

Kevin:

George:

Cliff:

Kevin:

George:

releases the CR package, those items, he releases, by an update to the
Itemized Work Statement. |

After the customer’s purchased those items.
Yeah. Yeah. Well, they're run through offerability.
Yeah. Well, he...

Okay, now, let me [finish the second point]. So, the CR at some point,
someone has to, there’s some process...

Yes.
-..where the CR... someone goes through the CR...
Okay. You betcha.

...and says, we can do this, we can do this, can’t do that one, we can do
this.

What they do, would you say, say he comes back, they [cover] CI,CR
package. Okay? The CR package, goes through the Change Board,
Oh.

For offerability, it’s for offerability, is what it's for.

This is again before the contract has been signed, so when you go to
the customer...

So it’s the same change board that handles MCs?

Yes. They get the CR package, or no, no, what they do here, when you
get the CR package, they’re doing wofking with the basic, it’s not
éhange board, it’s going through this, document industrial |
engineering. What happens here is the engineering people get with
business management and business management negotiates the CR,
the change request, with operations. That negotiation is called, is
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43

45
46

47

49

50
51

52
53

55
56
57
58
59
60

61
62
63

64
65
66

67
68
69

Cliff:

George:

Kevin:

George:

Kevin:

George:

Kevin:

George:

Kevin:

called, offerability. Offerability, includes two things: a cost and a
schedule.

What doesn’t concern George is weight, that's another one of the
factors, that they...

Those are the two things. Okay, now, and what...

And who does this? The customer engineer and business
management?

And, with the IE people in operations. The IE people, that’s the
manufacturing side of the house.

I see, so the IE people are the ones who have all the standard work
flows and they look at it and say, oh well, this is a pretty big change,
it'll probably take the engineer guys this long to engineer...

That’s where they come up with the A & A, based on when this
aeroplane gets delivered, okay, the IE cat looks at this and says, hey,
we can do it, or we can’t do it, that's acceptance or they reject it, they
can’t doit. So, but this is for offerability. Now the ones that they can’t
offer they’ll go back and tell ‘em, we can’t do i, because it takes too
long, we can’t get it on those aeroplanes. Okay.

Right, if they came in and said we've decided that we need an all
titanium skin, the IE guy would kind of look at that and say, SOITY,
we're not going to be able to do that one.

That's correct. Okay, so that CR will go away then. Then the customer
would have to agree that he'll take aluminum or fiberglass or
whatever’s there instead, all right?

Yeah, because it’s conceivable since there’s no contract signed at this
point that the customer might even come back and say if you can’t do
that CR, then I'm not interested.
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70
71

72
73
74

75
76

78
79
80

81
82
83

85

86
87
88
89
9%

91

92
93

94
95

96

Cliff:

George:

Cliff:

George:

Cliff:

George:

Kevin:

George:

Kevin:
George:

Cliff:

Or they might...
Might very well.

There might be some horse trading though, telling ‘em that you buy
the aeroplane and we’ll have to commit it as a committed change after
it’s purchased and run through to try to contract the schedule.

Yeah, well, yeah. That's horse trading is what goes on, when they go
to the customer they say, we can not do it basic, but if the customer
wants this, it’s not by PRR, they’ll ask him to write an MC, a Master
Change, and [in he goes] the Master Change, the Master Change goes
to the board, takes all the fat out of the IE schedule, comes up witha -
recovery schedule to meet those aeroplanes.

And if you've got the customer engineer telling chénge board that this
is vital for this customer, he wants it, and sales’s made commitments
and some beyond this aeroplace...

You get the company position and then you bust your balls; [in plain
English] you do everything you can to make it happen.

So, in other words, ah, okay, so, in other words, it's not really the case
that there’s this line and everything that’s before it goes in as a CR and
everything that’s after it comes in as an MC. It might be that they look
at something that the customer wanted in the contract and say, well, in
the ordinary course of events we wouldn’t be able to do this...

That’s correct.

But since you really want it, we will pretend that you asked us for it
late, and, and do... some catchups to get it.

You have to come in and use a serialized control; you have to request it
by MC.

It might not be the same price, if it has togo in as an...
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98

99
100
101

102
103

104
105
106
107
108
109
110

111
112
113

114
115
116
117

118

119

120

121
122
123

Kevin:

George:

Kevin:

George:

Cliff:

Kevin: .

George:

Kevin:
George:
Kevin:

George:

So, so in other words this change process let’s me be...
That’s negotiable...

Yeah, yeah. This change process, it sounds like, is being used not only

- for, sort of unexpected kinds of changes, but also for things that you’ve

committed to in advance which you just couldn’t do any other way. .

You, you can’t support it with the basic release schedule. You can’t
meet it.

And that would be discouraged as a regular practice, to, [you know]...
I'm understanding things along here, correct me if I'm wrong, the, you
strive to get a date, a realistic delivery date to the customer before
hand so you don’t have to go into all these heroics later on to gef
features on the aeroplane, because as we witnessed this morning, it r-
raises havoc with the whole production line if you've got too many
special features.

Oh, I see, so the normal way... of doing that would be that the
customer would say I want this and you’d say, fine, we can do that by
1992. '

No, what they do what that package is, when we give this to the IE
people, this is, is business management side of the house, they’ll go in
and they’ll look at it and they’ll say, hey, the earliest aeroplane we can
get that package on is line position, uh, 1050.

- Right. We can do it for you...

So when they go back...

We can do it for you in 1995.

Well, no. No, no, no. No. They’ll look at it and they’ll say 1050. Now
maybe, what the feeling is, that the customer would like to have the
delivery of this particular aeroplane, let’s say, June of 89. Okay? Or,
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124 ~ let me see, let's go out ten months. Uh, [garble], November? Let's say

125 - hewants October. Of 89. But when we took the CR package for

126 offerability, the IE people come back and say, hey, the best we can do
127 is December. So what we do then is we go back and we tell him his |
128 first aeroplane will be delivered in December. So we don’t get into this
129 hassle. We can do it with the basic release on the IE schedule and meet
130 the delivery of his first aeroplane.

131 Cliff:  Ifthis happened to be a middle east customer and says I want that

132 aeroplane for the hajj, you know, where they transport all the pilgrims
133 to Mecca, there, if I can’t have it then, it's not going to be any good to
134 - me for a year or so.

135 Kevin:  So, so, you, you hoid on to for a year.

136  Cliff: Right. Well, whatI'm...

137  George: No, what we'll do then is we’ll work that MC [big]...
138  Cliff: There’ll be some serious negotiating.

139 George: See, what we’ll do then is we'll tell ‘em, hey, you come back with an

140 MC and we’ll get that on your aeroplane. So the MC comes in as a
141 compulsary change and then we can deliver it in November. We
142 compress it to meet, to support the November delivery. That's the
143 ' exception.

144  Cliff: Good, right. That is the exception. Because if we did that with
145 everybody...

146  George: Hooo... too costly.
147 Kevin:  Well, yes, but the story we were hearing today is...
148  George: Too disruptive.

149 Kevin: .. 1s because of the increased number of leasing planes, that, uh,
150 they’re starting to use RRs even more. Uhm. So maybe we can talk
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152
153
154

155

156
157
158

159

160
161
162

163

164

165
166
167
168

169
170

171

172

George:

Kevin;

George:

Kevin:

Cliff:

Kevin:

George:

Kevin:

about that, in a bit. So we're still talking here about, about, negotiated
changes, contract changes, so they will write the CR, maybe some of
the CRs will get pushed over and turned into MCs but most of them
are going to go into the basic statement of work?

That’s right, the basic statement, SOW, statement of work.

And the statement of work is really this document that says it's going
to be a plane and it's going to have these options and these standard
options and these special options which have been negotiated...

And this configuration.

...this configuration, uh, and it ties in with the contract which says it's
going to weigh this much and it's going to have these performances,
and... '

There’s a customer detailed specification generated after the negotiated
configuration has been defined. This detailed specification here is the
standard aeroplane detailed specification which is never been sold, it’s
what [company] considers to be the baseline for pricing, weight, etc.
And then you, you delete some of the standard variable features in
here that are being replaced by the negotiated...

So then, so then the DIE schedule comes back and says we’ll have you
that plane, it's line postition 1050.

Exactly. That’s what they do.

And they shake hands and sign the contract.
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3-3

SAMPLE INFORMATION-FLOW MODEL
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3-4

SAMPLE INTENTIONAL MODEL

Sorts

airplane

change

change-proposal

crws (change reguest work statement)
person

engineer isa person

manager isa person

Functions

change (change-proposal)
change (crws)

Relations

accepted-by (person, crws)
approved-by (person, crws)
have (object, person)

includes-features (airplane, chaﬁge)
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Individual models

Customer

JAirplane, Change: want (customer, have (customer,
Airplane)) A includes-feature(Airplane, Changé)

know{customer, can(customer—-engineer, develop-
crws(cuStomer—engineer, Change)))

can (customer, talk-to(customer, customer-engineer))

can (customer, accept-crws (customer, CRWS))

know (customer, can{(contracts, implement-crws (contracts,
CRWS))

develop-change-proposal (Performer, Change)

Effect: Jchange-proposal: have (Performer, change-
proposal) A change (change-proposal) =
Change

accept-crws (Performer, CRWS)
Effect: accepted-by (Performer, CRWS)

implement-crws (Performer, CRWS)

Preconditions: accepted-by(customer, CRWS)

Effect: Jairplane: have (Performer, Airplane) A
includes-features (Airplane, change (CRWS))

Customer Engineer (ce)

know{ce, can(project-engineer, classify-change (project-
engineer, Change)}))

can(ce, lookup-crws(ce, Change))

can(ce, develop-crws (ce, Change))

know(ce, can(customer-engineering-manager, approve-
crws(customer—engineéring—manager, CRWS)))

know (ce, plan(develop—change—proposal(ce, Change) ,

sequence (develop-crws (ce, Change), concurrently (
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inform(ce, test-integration, CRWS),
inform(ce, engineering-cost-and-schedules, CRWS),
inform(ce, weights, CRWS),

inform{ce, change~review-board, CRWS)))))

classify-éhange(Performer, Change)
Effect: know (Performer, class (Change))

lookup-crws (Performer, Change)

Precondition: class(Change) = “Standard Option”

Effect: JCRWS: have (Performer, CRWS) A
change (CRWS) = Change

develop-crws (Performer, Change))
Effect: dCRWS: have (Performer, CRWS) A
change (CRWS) = Change

approve-crws (Performer, CRWS)
Effect: approved-by (Performer, CRWS)

Project engineer (pe)

can(pe, classify-change (pe, Change))

classify-change (Performer, Change)
Effect: know (Performer, class(Change))
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COMPUTER SYSTEMS Co.!

In the next three chapter I present the data, collected at the three
companies I studied, which served as the raw material for my typology of
generic coordination tasks.

In each chapter; I present the details of the study as it was conducted at
the particular site and briefly describe the nature of the product produced and
the organization of the company. I then present an informal description of the
change process. Ifirst describe the general engineering development processes;
given that background, I then show how the change processes fit in. Finally, I
present the information-flow and intentional models of the engineering change
process that I developed for the site. '

1 Overview of site

Computer Systems Co.2 is a division of a large electronics manufacturer.
The division produces several lines of minicomputers and workstations and
develops system software for these computers. In 1989 the entire corporation
had sales of approximately $10 billion and roughly 100,000 employees.

During the year-and-a-half that we were studying the organization, it was
reorganized several times. Most of these changes were fairly minor, but a major
reorganization took place just as we were finishing our data collection. I will

1 The field work and initial data analysis for this site were done by Steve Brobst and me. The
models and their interpretation are my work. _
2 Pseudonyms have been used for all sites to disguise the identities of the companies studied.
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concentrate mostly on describing the processes as they were at the time we
studied them, but I will comment on the changes made in the final
reorganization.

1.1 Data collection

The model presented in this chapter is based on 16 interviews with 12
different individuals, including 6 software engineers, two managers and three
members of support groups and one marketing engineer. The interviews were

~carried out during 6 trips to the company's engineering headquarters.

In contrast to the other sites in this study, I did not spend much time
directly observing the engineering processes at this site because I worked on the
analysis with a former member of the software development group who was able
to provide some of these details. '

It should be noted that data were collected about only one group, the
operating system kernel group, because my contact at this company worked in
that group. My impression from interviews with a few individuals who worked
in different groups is that processes are similar in other software development
units, but I have no direct information about them.

13  Characteristics of the product

The group I studied was responsible for the development of the kernel of
a proprietary operating system, a total of about one million lines of code in a
high-level language. The system an end-user would use is composed of modules
from several different software development units (e.g., the kernel, network
support, compilers, database, etc.). Development of the operating system had
started about 5 years before we began our study; at that time, the system had just
been initially released.
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1.3.1 General characteristics of software

Software is different from other products in many ways. One of the most
fundamental differences is that software is not a physical product. This has
several implications.

First, once the development process is completed, reproduction of the
finished product is relatively straightforward, consisting mostly of duplicating
tapes and documentation. Therefore, the product is very malleable and almost
any change that can be imagined can be made, without the physical constraints
of other products, such as the need to change tooling or produce new
components. (This is not to imply that changes to software are costless.) Asa
result, the rate of changes is higher in software than in hardware (A, p. 110)3.

Second, problems are much more likely to be systematic. If someone finds
a problem with a piece of hardware, another item may or may not have the same
problem; a problem may be due to a design flaw, but it may also be a random
failure. If someone finds a problem with a piece of software, on the other hand, it
is likely that every copy of the software has that same problem. This is especially
true for system software, which is usually less customized than application
software, and for micro or minicomputer software, where the variance in
underlying hardware is less. In some sense there is only one product, not
multiple instances.

1.3.2 About operating systems

The operating system is the basic program that insulates programs
running on a computer from details of the hardware. As aresult, it is typically
quite specific to the details of the hardware. In this case, the operating system
software works only with this manufacturer's hardware.

What is an operating system? Traditionally, the operating system's function
has been to insulate programmes from the details of input-output devices such as

3 References to the page number of my field notes are given as the source for quotations from
subjects.
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printers or disk drives. Additional mechanisms allow multiple users to share the
processor without interference. Increasingly operating system provides
specialized services such as access to a network or database and transaction .
management. |

Structure of the operating system. The system we studied was decomposed
hierarchically into several major subsystems, such as the memory manager or file
system,; each subsystem is further divided into a number of modules. Each
module implements a small set of services.

Proprietary operating system. The group I studied developed a proprietary
operating system that ran only on this particular vendor's machines. The
company also supported a version of UNIX™. For the UNIX system, there is an
externally imposed standard that the software has to meet; for the proprietary
system, the standard is set internally and can be changed as seem necessary. One
interviewee felt that having a fixed standard made the development of UNIX
easier, since there was no argument about what the software should or should
not do.

1.3.3 Interdependencies

Interactions between different parts of the system are not always obvious,
since they are not limited to direct physical connections. As a result, the impacts
of changes are not always immediately apparent. In principle detecting
interdependencies should be fairly straightforward. Different parts of the system
depend on each other if one makes use of services provided by the other. For
example, in the case of the operating system, the process management system
may need to call routines that are part of the file system; therefore, (parts of) the
process management code depends on (part of) the file system code. Typically
the interface to a module is defined in what is called a “header file.” The header
file defines any necessary constants, data types and the routines available in the
module. The calling module then includes this header file.

™  UNIXis a trademark of AT&T.
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Simply looking at these included files overstates the interdependencies,
however, since a given module includes many routines all of which are defined
in the header file but only a few of which may actually be used. Furthermore,
since it is sometimes time consuming to list exactly which other modules a
program uses, programmers often use a file that simply defines everything that is
likely to be necessary. Overuse of this file masks the real underlying
interdependencies by (apparently) making everything depend on everything
else.

Interactions can be determined instead directly from the source code of
the system, for example, by looking for places where one module calls another.
Cross-reference listings can be made that list which modules call which other
modules. These listings exist and are used, but they have two limitations. First,
the cross-reference does not indicate where modules use data structures from
another module (as opposed to calling routines). Second, the cross reference only
covers the kernel; it does not show which routines are called by code written by
other groups.

As a result of these problems, there seem to be no reliable mechanical
means to determine the interactions between different modules. Instead, social
mechanisms are used.

Different interfaces are provided for use by different classes of users.
Some services are provided for use by programmes written by customers. For
example, the file system provides an interface with routines to allow a user's
programme to open a file and read data. Other services are provided to other
parts of the operating system through internal interfaces. For example, the file
system may need the services of the memory manager to allocate space for
buffers.

Interfaces are described in several kinds of documents. The behaviour of
a piece of code is supposed to match the document describing it, so changing the
code requires a revision of the corresponding document. Itis the doéument that
is controlled for changes, not the code itself. The change control process attempts
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to ensure that all registered users of a document are informed and get a chance to
comment when changes are made.

Interfaces provided to the customers are described in the published

manuals for system. Other interfaces are provided by one part of the operating

- system for general use within the system and are called service interfaces.
Interfaces provided by one software development unit for the use of another are
documented in external specifications. Interfaces used only within a unit may be
documented in an internal specification or perhaps not at all. These documents
are maintained in a document library. Programmers can request copies of a
document and they will be registered as a user of the described interface. At the
time of our study, there were 800-900 documents, with about 1000 users total. A
total of 15,000 copies of documents had been distributed.

Changes to different kinds of interfaces are managed differently.
Customer-used interfaces are subject to change control but essentially never
change, since such a revision would require changes to a customers' code making
a new release of the operating system incompatible with earlier releases. New
functionality is instead be added to the system as a compatible extension.

External specifications are currently not change controlled. The person I
spoke to in the'changé control group said they would like to change control
external specifications, since groups outside the software development unit use
these interfaces, possibly including groups external to the company. For
example, a third party vendor of a system utility may need to access an internal
interface to get certain kinds of information.

Anyone internal to the company can use the service interfaces to operating
system. These interfaces are less likely to change since many other people use
them. Again, changes can often be be made as an addition.

Other interfaces are not described by any official document, since they are
- only used internally. These interfaces can therefore be changed without going
through the change control process. Unpublished interfaces are supposedly used
only by a few other programmers. These may change often since the owner and
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users of the interface can get together and negotiate any necessary changes. It
appears that the developer of such an interface simply remembers who uses it
and informs them informally when a change is necessary. |

In theory, a programmer should register with the document library if they
want to use a documented interface and ask the maintainer if they want to use an .-
undocumented interface. In practice, programmers sometimes borrow a
‘document or copy pieces of someone else's code and therefore do not realize that
they are using an internal interface or that they should inform the developer. In
some cases, these other programmers are in other groups, so the usual social
norms may not apply. These programmers should usually be using a -
documented interface. Problems arise when changes are made because the
owner of the module can not know to inform these people. In fact, the
prbgrammers may never know that the interface changed until their code stops
‘working, or, worse, becomes the source of mysterious system errors.

1.34 Customer support

The operating system is supported directly by the company. A service
division separate from the developers provides a first level of support. Problems
with the system that require changes to the code are eventually routed to the
developers for action.

Typically customers have a contract with the company for support.
Different customers may opt for different levels of support. These levels mostly.
affect when the customer can get service, e.g., 24 hours a day or only during
business hours, and how quickly the service is provided.

12  Characteristics of the organization
1.21 Structure

Computer Systems Co. is a division of a large manufacturer. The parent
company was divided into many divisions, each with a particular set of
products. Each division in turn is divided into subdivisions, each responsible for
a particular product. For example, in the division I studied, there was a
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subdivision for UNIX, one for the proprietary operating system, one for
databases, etc. Each subdivision was divided into three units to five units; the
proprietary operating system subdivision we studied had units for the low-level
kernel, the high-level kernel and design. The division between high and low-
level kernel units was described by my contact as somewhat arbitrary, reflecting
as much the need to divide the subdivision into two units because of the number
of engineers as by any sharp divisions in the product. Each unit in turn was
divided into a few sections; a section comprised 3-5 projects; and each project

had a manager and 3-10 engineers. Figure 4.1 shows the approximate structure
of the software division. |

The software development units in this particular subdivision were
located together in one building on a large campus. The other software
development units whose products comprise the completed system were in other
buildings on the campus, in the surrounding area and around world. The
proprietary operating systems subdivision had 200-300 programmers in 8
development groups, plus integration and test, peripheral support, etc.

1.2.2 Communication with other engineers

Most communication between engineers seemed to be in face-to-face
meetings. The engineers had easy access to electronic mail but they seemed not
to use it for discussions between themselves. Face-to-face contact was
considered important enough that people from outlying groups were flown in
weekly for meetings.

2 The software development process

As with most products, the operating system is continually improved and
goes through numerous releases. The goal is to release a new versions of the
system periodically, although the releases may not be evenly spaced.

There seem to be two types of release. Major releases get a new version
number. Typically, these releases add additional functionality to the system and
fix some number of known bugs. Often there is some sort of theme to the release,
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that is, some new class of functionality that is added. Between major releases
may be some number of minor releases that fix bugs but probably do not add
much functionality. Revisions usually do not affect the existing published
functionality (that is, the system has to do everything the previous version did
and usually in the same way). '

The development of new releases go on in parallel; at the time we visited, .
4 or 5 releases were being worked on. The first release (1.2) had been available to .
customers for a few years and a second (2.0) had just been released. Later
releases were in earlier stages of development.

For a new release, process starts with specification of system and
especially of new functionality to be added. The designers of the system plan at
~ high level the necessary changes before any code is written and break the system
up into pieces so multiple people can work on it. Sometimes the manager looks
first at the capabilities of the programmers available and then divides the work
accordingly.

For each module, the designers of the system set the specification for what
the module does and define the interfaces between modules. One manager
commented that these things are much easier to do when you have done it
before.

When the functionality is settled, development begins. The development
process starts with the code for the previous version of the operating systelh
(which is itself still under development). Under the structure that was in place at
the beginning of our study, each software engineer owned a set of modules for
all releases. That engineer starts working on a new release by making the

-necessary changes to the module to add the new flmétionality. Some modules
may not need any changes at all; others may be replaced or new modules
created.

~-Once a module has been coded, the software engineer tests it individually,
what is called a unit test. The old functionality of the module can be tested by
linking it with the code from the existing release. However, it may be difficult to
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test new functionality. Also, a particular change may require new versions of
other modules. The engineer can make copies of these modules for the test, but it
may be difficult and he may over look some, complicating the testing process.
Furthermore, the module may not be tested for interactions with other new
modules.

When an engineer finishes making the changes for a new release, he gives
copies of the changed modules to the integration group. The integration groups
then links the code for different modules to form a complete operating system
kernel.

If an error occurs when the integration group tries to compile and link the
latest version of the system, they attempt to solve the problem by backing out
changes. As a result, submitted changes may sometimes not appear in a released
system. This can cause problems, especially if submittals get out of order. First,
if an earlier version of a file replaces a later version, the changes made in the later
file are lost. Second, a later change may depend on change made in earlier
submittals.

The operating system kernel itself can be subject to some tests by the
engineers and a testing group in the operating system unit. This is again a unit
test, since the entire system includes components from other development
groups, such as database. The kernel can be tested by using earlier versions of
the code from the other software development units. When bugs are found in
the system, the testing group notifies the appropriate eﬁgineer by filing a formal
bug report.

The finished build is given to another systems integration group to be
integrated with the most recent code from other software development units
(e.g., networking or database) and the entire system is then tested by the
engineers and a testing group. That group does the complete system test and
sends bug reports back to the engineers.

Different phases of development have different test requirements. The
first level requires that the major functionality be in place, that the system passes

131



the regression tests indicating that the old functionality still works correctly and
that the system runs continuously for 24 hours. The second level test is for 48
hours of reliability and integration with code from other software development
units. This level also integrates any fixes made to earlier releases. Once the
system passes this level of testing, it is supplied to the other software
development units for use in testing their code. The third level calls for 120
hours of reliability, and so on to the sixth and final level, which is the code that
can be supplied to customers. There are scheduled dates by which the system is
supposed to pass these points, but they may be missed if unexpected problem
arise.

As problem are found, the engineers modify and resubmit their modules
to the integration group. The operating system kernel can be rebuilt (that is, the
changed modules recompiled and the entire kernel relinked) as often as
necessary. Depending on the number of changes made, it may take several hours
for a build to complete, so there is an upper limit on the frequency of rebuilds.
However, if a problem is found immediately and can be corrected quickly, the
integration group may make a new build to incorporate the fix on the same day.
In order to speed up the process of building the system, the integration group

may recompile only those modules that are known to be affected, ignoring some
’ potential interactions. -

After the whole system passes a particular level of testing, the integration
groups in each of the software development units get all the code for use in
testing their next level. Timing problems can arise if other groups are on a
different schedule, since they may uncover bugs at different times. If it is
important to have the latest code from some other software development unit,
for example, to test a change that crosses unit boundaries, the integration people
can get whatever is the latest code given to the systems integration people.

Eventually all desired functionality has been incorpoi'ated and the entire
system successfully passes all its tests. At this point, it may be released to the
customer. The exact release date seems to be a function of the schedule and
when the system passes the required tests. At that time, all supported customers
receive the new release of the operating system. This release includes a
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document déscribing the new functionality and the known problems that have
been fixed.

3 The software chahge process

Now that we have seen the basic design process, we can discuss how
changes fit into it.

3.1 Reasons for changes

Lientz and Swanson [,1980 #149] distinguish three reasons for making
changes to a programme: corrective, perfective and adaptive.

Corrective changes are those made to fix problems. For this company,
problems are defined as disagreements between the behaviour of the programme
and the documentation. Many problems are found during the development
process by the testing group. Some are found by customers using the product.
Fixing these problems usually requires changing the software, but sometimes the
fix is made to the documentation instead.

~ Perfective changes are those made to improve a correct programme with
altering its behaviour, typically by improving performance.

‘Adaptive changes are those that add new functionality, altering the
software to meet changing requirements. These changes are mostly made
between releases of the system as described above and I will not discuss them
much in this section.

3.2  Goals of the change process

The organization had the following stated goals for the change procéss
(A4, p. 7)

ensure that all critical program parameters are documented: customer
commitments, cross-functional dependencies.
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ensure that a proposed change is: reviewed by all impacted software
development units/functions; formally approved or rejected.

ensure that document status is made available to all users: stable (revision
number and date); changes being considered; approved /rejected / withdrawn.

ensure changes are made quickly and efficiently

More generally, I believe the change process actually has two primary
goals: to ensure the quality of the software and to minimize the cost of changes.
The change system maintains the quality of software by ensuring that changes
are made by someone who understands the particular piece of software, that
changes are fully tested and that the system and the system documentation are -
kept in agreement. To reduce the cost of changes, the system requires that that
changes be made only in response to a problem or an authorized enhancement.
As one manager said (A, p. 108), the “formal change control process is there to
prevent changes.” '

3.3  Overview of process

The basic flow of a change is shown in Figure 4.2. Corrective changes are
made in response to problem reports, which come from a testing group and from

Figure 4.2. Overview of change process for Computer Systems Co.

Testing group Customer
Problem reports Problem reports
Software ' Software Software
engineer engineer engineer
Software releases Paich files
Customer Customer
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end users of the operating system. These reports are filtered and genuine and
novel problems are routed to the software engineer responsible for the
apparently affected module. This engineer, in consultation with other engineers,
develops a fix for the problem. This fix may require changes to other modules;
those changes are made by the engineers responsible for the other modules.
Customers get problem fixes either periodically as part of a new release of the -
software or, for more urgent problems, as a separate patch file that can be loaded
on top of the current release.

34  Aninformal description of the change process
34.1 Customer service

The software maintenance processes starts when a customer or the testing
group notices some problem with a product and complams The testmg group
can enter a problem report directly in to the system. Customer complaints are
handled in several ways.

Field engineer

One route for problem reports is through the field engineer for the
particulér site. External customer accounts are managed as a unit, so each
customer has a field engineer as a single point of contact with the company.
Given a customer problem, the field engineer can create a change request or
locate and order patches for the operating system. However, the focus of field
engineer's work is changing away from handling problems and more towards
doing marketing support and system configuration.

On-line support

A second route for problem reports was just being developed at the
conclusion of our study. This was an on-line database of documents. Some
documents describe known bugs and give the appropriate workaround or patch
information. A customer can dial-in to the database and search for applicable
documents by key word to locate a document that describes their problem. If the
customer finds a solution to their problem, they can call to order the patch. If
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not, they can leave an electronic request for a return call from the response
centre.

Response centre

‘The third and I was told most common route for reporting problems is the
response centre. (I was not able to obtain actual counts of the number of reports

for each channel.) The company maintains four telephone response centres, with . -

- groups of specialists in different aspects of the products. Two centres are located
in the US, one on each coast; the others are located in Europe and Asia. Between
them, they provide twenty—four hour coverage for the entire world. When a call
comes in after hours, it can be routed to an appropriate specialist groups
overseas if necessary.

The centre we visited was located near the corporate headquarters. It was
the largest of the four and had a total staff of about 300 people in roughly 24
groups. The groups were arranged by product, such as printers or network
software. The one group we looked at had 3 hardware specialists and 4 software
specialists. |

To reach the response centre the customer uses one of several different
toll-free numbers. There are different numbers for problems with hardware and
software and for ordering supplies, patches, etc.

Initial call screening. An incoming call is answered by a call coordinator.
This person first checks the contract status of the caller in a customer database
and creates a record of the call in a call database. The call coordinator then
attempts to determine which product is causing the problem and records the
symptoms of the problem. For software problems, this may include an error
number produced by the operating system.

Usually the call is not directly transferred to a specialist; instead, after
taking the details, the call coordinator tells customer that someone will call back
and ends call. The call might be transferred if the specialist was waiting for that
customer to call back, but doing so ties up the toll free number, so they prefer not
to.
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Electronic requests from the on-line database also enter the system at this
point; a call co-ordinator takes the electronic messages and uses the information
to create a record in the call database.

Prioritize call. The call coordinator assigns a priority to the call for use by

‘response centre in tracking the call. The usual priority is 4, meaning to call back. .
within 2 hours. Other priorities include 3, meaning to call back within 15
minutes if the customer feels the problem is critical, or 5, meaning to call in the
morning if the call comes in after hours and the customer does not have 24 hour
support. Priority 2 means the call came from a “down site,” meaning one where
the system is not working at all; priority 1 is for a call from a field engineer on
site who needs assistance.

Route to a specialist. The call is then assigned to the appropriate specialist
group, based on the symptoms. The call coordinator may call the group to
discuss a problem before making the assignment. Each group has a hot-line for
these sorts of calls.

When the call is assigned on the computer, a sheet of paper describing the
call prints out in the appropriate group. One of the group members then takes
the call. The individual we interviewed worked in one of these specialist groups.
She estimated she got six calls a day; on a slow day it might only be 2 or 3; on a
very busy day it was as high as 14.

Specialist handles call. If the call appears to be more appropriately handled
by a different group, the person handling it may hand carry it to the other group
and ask them to take care of it. If they agree, then the call is reassigned on the
computer and a new sheet prints out in the new group. This may happen at any
point in handling the call.

Based on the initial information in the call record, the call handler may
decide to collect various manuals or other information that may be useful. The
specialists have many kinds of information available to help solve the problem,
including the manuals distributed with the product, any marketing information
describing the product and current price lists, ordering information, and
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internally produced documents describing the product. Specialists also have
access to a a database which contains information about all calls logged by any
engineer for the past few years and the database of change requests. In solving
the problem, the specialist may make use of flowcharts developed for trouble-
shooting problems. In some cases, the call handler may require assistance from
someone in another group. For example, a printer may not work because of an
underlying problem with the network.

- The call handler then calls the customer to discuss the problem further
and logs all information on the call record. During this call, the call handler
attempts to determine the user's problem.

User misunderstandings. Problem may be due to a user misunderstanding
of the product or some quesﬁon which is answered in the documentation, in
which case the call handler explains the problem. Our interviewee estimated that
4 out of the 6 calls per day were things the customer could have looked up in the
documentation. :

Hardware problems. In some cases there may in fact be a problem with the
hardware. Our interviewee estimated that 1/2 to 1 call a day were due to
hardware problems. This may be apparent from the beginning of the call; for
example, some error codes indicate that a problem is always with the hardware.
In other cases, it may take a while to determine the source of the problem. There
are hardware specialists in the particular group we studied, but they do not
directly deal with the customer; instead, they serve as a resource for the software
person and for field engineers. These hardware specialists must sign off on a
diagnosis of a hardware problem. In the event of a hardware problem, the call
handler can put in a call to a field engineer. The handler can simply turn the
problem over to the field engineer or request that the engineer perform some
additional tests and then report back.

Software problems. Our interviewee estimated that 1to 11/2 calls a day
were real problems with the software. The reported problem may duplicate a
known software bug, In this case, if there is a patch, the call handler can order it
for the customer. Patch files can be delivered by modem or on a tape. Patches on
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tapes come with detailed instructions so customer can install them or have a field
engineer install them.

If the problem is still being worked on, there may be no patch yet
available. In this case, the call handler can provide any work around given or
indicate if the bug will be fixed in a future release. The customer can be given

‘the number of the change request so the customer or the field engineer can track
the status of the problem. The response centre does not note that more people
have the bug.

The individual we spoke to at the response centre did not get queries from
people asking about the status of a change, since customers have other ways to
get this information, such as asking their field engineer to follow it for them.

Change request. If the reported problem does not match any existing
problem report, the call handler can enter a new change request (a CR). Change
requests are stored in a change request tracking database, which assigns it a
number. Our interviewee had entered a change request 2 times in 9 months of
working in a specialist group.

The change request in the database has sections of text entered by
different groups. An initial section describes the problem, the hardware
configuration and any known workarounds. Other sections are added by
different groups to further explain the problem and give a diagnosis. The
response centre would list the field engineer for the site as the reference contact
for a change. That way any information or requests for information from the
software development units goes back to the field engineer for the site. When a
‘patch is available, the field engineer would be notified and could order the patch
for the customer. ‘

The system can generate letters to the customer at different stages
indicating the status of the change. The customer gets one when the problem is
initially entered. The database is also used to count the number of outstanding
requests, to collect and route information, etc. The change request database is the
major communication channel between the customer service people and the
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development people. One bug, for example, had two CRs against it in the
database; the second noted that it was a duplicate of the previous report and
asked what was happening to the problem. A development engineer then used
the engineering data field to explain the situation.

342 Marketing engineer

Once a change request is entered, it goes first to the marketing engineer
for review. There are eight such engineers for the operating system we studied.

Identify problem. The marketing engineers get a list of problems entered on
the change request tracking database every morning. About half the time the
documentation of the problem is éomplete enough to work with. In the other
cases, the engineer requests additional information from the submitter and waits
for it to be sent.

Once the documentation is complete, the marketing engineer attempts to
replicate the problem and gain a better understanding of its causes. The engineer
may determine that the problem is really a user misunderstanding, a duplicate of
a known problem or due to a documentation error. If the problem appears to be
genuine, it gets processed further.

Enhancements. The marketing engineer may also decide that the CR is
really a request for an enhancement. Sometimes the customer explicitly says it is;
occasionally the software unit will reclassify something as an enhancement
request. (Sometimes reclassification is used as a strategy to reduce the count of
unfixed bugs.) Enhancements are evaluated to determine which are worth
doing. Occasionally an enhancement will be given high priority, e.g., if a big
customer requests a new feature in order to implement anew system. In some
cases, these enhancements may even be issued as a patch, since not every
customer needs the new functionality.

Prioritize problem. The marketing engineer then sets the priority for fixing
the problem. Low priority problems may never get fixed. One interviewee
explained that Computer Systems Co. is sometimes viewed as a “black hole,”

-since reported problems sometimes never get addressed.

140



Problems that come with a telephone call from response centre or a field
engineer get higher priority since someone is waiting for the fix, but if the field
engineer does not complain, this does not happen.

If the priority is high, when the problem is finally assigned to a software
engineer, the marketing engineer may negotiate informally for a commitment
about when a problem is going to be fixed or with the engineer's manager to
ensure the engineer has time to work on the fix. If they can figure out a
workaround for the bug, then the priority for fixing it may go down. The
marketing engineer also decides whether to wait for the fix in a new release or to
issue it as a patch.

Assign to software development unit. The marketing engineer next attempts
- to determine the location of the problem and assigns the change request to the
unit responsible for that code. If the marketing engineer can not locate the
problem, the change request goes to a SWAT team. This group has access to the
system source code. At least, they locate the bug within some module; at the
most, they diagnose the bug and suggest a possible fix to the engineer.

The marketing group does not follow a bug once it has been assigned to
the software development unit but they do send the followup letter to the
customer.

3.4.2 Engineer develops a change

Periodically someone in each group in the software development unit
checks the database for new change requests for the group. Each request is then
assigned to the owner of the particular module.

The software engineer then investigates the problem. I the problem turns
out to be entirely in another module, then the engineer passes it to the person
responsible for the other module to fix. The engineer first discusses the problem
informally with the other engineer; if it is agreed that the problem should be
transferred, the engineer then changes the assignment in the change request
tracking database.
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Once the software engineer has characterized the bug, the status of
problem in system is updated to known bug and another letter to the customer is
generated at this point saying what the problem is thought to be.

Next the software engineer prioritizes the problem. If the problem is not
serious, it may not be corrected for quite sometime (or ever). If the problem is
serious, the marketing engineer calls the development group engineer to
empha51ze that a solution is needed quickly.

Each engineer is simultaneously working on several versions of the
system. The problem was probably only reported against one version that the
user was using. The engineer needs to check if it also occurs in the other
versions. A fix may have to be made separately in each version. For released
versions of the operating system, they mostly just fix significant problems; less
significant problems might not be addressed in these releases but would be fixed
in later releases.

If the problem is internal fo a single module, the engineer can just fix the
module and resubmit it. In other cases, the change may require changes to
several modules or a change in an interface. In these cases, the engineer must
negotiate the changes with the owners of the other affected modules as well as
other interested engineers.

343 Change approval process

Changes to some interfaces require changes to documents that are
controlled by a change control group. To change a document, the engineer
writes up a proposal for the change. For a major change, this might be a thick
document which is widely circulated. For a minor change, only a few people
may be involved. Typically the change includes a marked up copy of the
document indicating what has changed.

The engineer investigates who will be affected by the change and invites
these people to the design reviews. There are two kinds of reviews: reviews of
the external and internal specifications for a module. Other engineers receive the
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proposed change. If they are not affected, they simply say so. Otherwise, they
come to the design review and comment on design.

When the change is agreed on by the engineers, the engineer seeks
approval from the change review board. To make a change, the engineer fills out
a change request form. This form indicates the document affected by change, the
estimated impact of the change on the schedule, the resources needed, etc.

Changes are assigned a severity level, one of 1) minor corrections such as
typographical errors, 2) functional changes to an external specification, or 3)
major functional changes that affect many people. The form is then signed by up
to 3 levels of supervisors, depending on the severity: the project, section and unit
managers. The engineer then submits the form to the change review board.
Minor changes do not go through the full change control process; since the
change does not affect the functionality of the module, the revised document is
simply resubmitted.

3.44 Change review board

The change review board is the release team, which is composed of
representatives of different software development units, software manufacturing,
integration, testing and performance unit, 15-20 people in total. This group
meets once a week for two hours, during which they discuss change requests
(among other issues). For the proprietary operating system, they got 4-5
changes/week; for UNIX, 15/week. This board approves or rejects the
submitted change requests.

The change maneigement board is composed of people from program
management. The change management board can change the level of a request
or escalate the change to higher levels of management.

Before the meeting of the change review board, each member of the team
fills out a form evaluating the change from the point of view of the particular
group. If there is any disagreement about what to do, the team discusses the
changes and comes to some agreement. If necessary, the team members may go
- back to their groups to get more information about the impact of some change.
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Enhancements. If the request is a request for new functionality, it is
evaluated and prioritized by the change review board for the product before
being implemented. Some changes are suggested directly by customers; requests
for new features often come from marketing. In some cases, the change control
board decides not to implement the change.

3.45 Engineer changes the module

Once the change is approved, the engineer changes the code for the
modules. The end result is code for a new module that meets the new
specification. When the change is complete, the engineer and another engineer
walk through the module as a check of the changes. Also, the engineer tests the
modules that were affected. To test the module, he recompiles it and relinks the
system. For changes that affect multiple modules, the first engmeer mformally
tests the entire change with the other engineers.

3.4.6 Integration and testing

When the engineer is satisfied with the change, he submits the new code
to the testing and integration group. In order to submit a change, the engineer
must note which CR is being addressed; without an CR, the integration group
will not accept the change. The submittal form must be approved by the
engineer's project manager.

As part of the submittal the engineer notes which build lines are affected
and if the files should be carried forward for later builds. If multiple modules are
changed, each change is submitted separately. The whole change is assigned a
bundle number and each engineer involved submits his changes to that bundle.
The initial engineer then indicates when the bundle is complete.

The integration group then recompiles all the latest versions of the code
and relinks the modules to make a complete operating system, as described
above. The kernel is then tested.
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34.7 Distribution of changed code

Patches. If the problem is serious, a fix is released in the form of a patch.
To make a patch, the object code for the affected modules is released separately |
- on a tape which can be quickly installed on the affected customer's system by a
field engineer or by the customer. Patches are maintained by a patch
coordinator.

When a new patch is created, the field engineer for the original site is
notified, since he was put down as the contact person for the change request.
Other people get a software release notice which lists the patch. They can then
order the patch from the response centre.

New releases. If the problem did not need an immediate solution (e.g.,
there is a workaround that avoided the problem), then the customer would wait
for a release of the system that included the change. Customers are periodically
sent the most recent release of the system.

3.5  Perceived problems with the change process

The process is only parﬁal successful at meeting its goals. There are ways
to go around the change control process. For example, in theory changes are
made only in response to reported problems. In practice, an engineer can find a
bug report that describes a problem in the same module as he wanted to work on
anyway and make whatever changes he wants. To some extent, the system and
the programmer are working in opposition: the engineer wants to improve the
software and the system wants to prevent changes.

Changes are problematic when they are visible outside a single module
since they then require coordinated changes to several modules. Changes to the
interfaces between modules are always visible and as a result changes to these
interfaces are often controlled.

Visible changes pose several problems. For an engineer can oniy do unit
tests (that is, tests of a single module); he or she can not really test the whole
operating system since he or she does not necessarily know how the other
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modules are supposed to behave. Also, the engineer or even the integration
group might not recompile all affected files, since there are no sure-fire methods
fo determine which other modules inight be affected by a change to an interface.
Mechanical means of checking for interdependencies exist, but are limited and
are made less useful by the overuse of a definition file that essentially makes a
module appear to be dependent on all other modules. This may result in
modules with inconsistent versions of an interface. These inconsistencies are
especially problematic if the modules are developed in different divisions since
there is little informal communication between divisions. For example, the word
processing system once became the source of mysterious system crashes. It
turned out that the developers had used a very low level system call which
caused the bug. There was no way for them to know not to use it and no way for
the 'developer of that call to tell they were using it, since the word processor is
developed in another, geographically remote software development unit.

If the internal interface is used by an outside company, then there is no
informal communication at all, but consequence of changes is greater, since the
new release will break customers' code. For example, some system utilities need
low-level information about status of jobs in the system; these break when the
low-level data changes.

One solution is to provide documented interfaces to the data people want,
At the time of our study, the change control group was planning to control the
use of these interfaces. They had surveyed customers to see what internal data
they use and were planning a new set of interfaces to access that data.

A second solution is to better track what interfaces people are currently
using. There is a database that lists which engineers have requested copies of
external specification documents can be used to track who uses a particular
interface, but it is not clear how often this is used or how accurate it is. For
example, engineers frequently borrow copies of documents or code fragments;
these borrowings could result in interdependences that are not captured by the
database. The change control group was also working on a more formal
definition of who should use which interfaces. One petson was working on a
database that would list all interdependencies, but was concerned that without
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formal mechanism for people to report their use of other modules the database
would not stay up to date. '

3.6  Reorganization

Towards the end of our study, the part of the company we were studying
underwent a reorganization. In this section I will concentrate on describing the
- changes that were made; in a later section I will use the models to suggest an
explanation for the change.

Originally, the software engineers in the development group did both
development of future release and maintenance of current releases of the
operating system, and each software engineer made all changes of both kinds for
a set of modules. This arrangement is often called “code ownership,” since each
module of the system has a single owner. When a bug is reported against a
particular module, the owner of the module would check if the bug existed in
other releases, determine which releases needed to be fixed, develop a fix for the
bug and apply it as necessary.

The reorganization split the development group into support and
development groups for the different releases, possibly to allow the development
engineers fo concentrate their time on adding new functionality. The current
releases are no longer under active development; instead, the engineers for these
releases just fix important problems. As each version of the system is made
available to the customers, development stops and the release goes into support.
Many bugs are reported against the current releases, however, since those are the
ones that customers have. Therefore, when bug is reported, the support
engineers flag that bug may exist in future releases. The development engineers
may then fix the problem in the future releases.

Simultaneously, the company also started to use a source control system.
This system maintains a copy of all source files. When an engineer wants to
make a change to the file, he or she checks it out of the library. The system thus
records which engineers are working on a particular module . When the change
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has been completed, the module is checked back in and the system identifies

what changes were made.

The company did not need such a system under the earlier arrangement
because only one person, the owner, would ever modify a source file. In fact, the
owner of a module would maintain his or her own copies of the source files.
Under the current system, however, the support engineers are not as specialized
by module. This seems to be because the support group has fewer engineers
because fewer changes are made and no development is going on. The support
engineers seem to be organized around change ownership instead of module
ownership; that is, an engineer is assigned a particular change and fixes
whatever modules are affected. With change ownership, multiple engineers may
be working on the same module. In these cases, the engineers may need to
manually merge two fixes to ensure that they make sense together.

4 An information-flow model of the change process

The detailed model itself is included as an appendix to this chapter.

4.1 Overview of model

An overview of the information flow model for the software change
process is shown in Figure 4.3. Messages flow generally from top to bottom.
Only the primary information flow is shown in the diagram; messages do
occasionally skip levels or flow backwards to provide feedback, but these links
are not shown. Also, only seven of the actors are shown in the overview:
customers, the response centre, marketing engineers, engineering group
managers, software engineers and testing and integration.

42  Components of the model
4.2.1 Actors

The full model has 16 types of actors, described in Table 4.1.
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Figure 4.3. Overview of information-flow model for Computer Systems Co.
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4.2.2 Messages

One interesting feature of this model are the different message types. The
different message types and their fields are shown in Table 4.2. There are several
different kinds of Solution messages: Clarification, Could not duplicate, Workaround,
Software release and Patch; these share some fields and in some cases are
processed similarly. FHaving these all be special cases of a Solution message makes
the representation of the model more compact.

4.2.3 Subtasks

For ease of exposition, I have divided the process into three subtasks, as
discussed in Chapter 3: (1) determining that a change is necessary,
(2) developing and approving a change and (3) implementing the change.
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4.3  Determining a change is necessary

4.3.1 . Customer

By assumption, the process starts when the customer encounters

unexpected behaviour in the system. The customer sends a message describing

the problem to the customer engineer or the response centre. Here we model the

customer complaint as a Problem report message.

Table 4.1. Actor types for the Computer System Co. model.

Type of actor Function in change management process

Bug tracking team Given symptoms, determine which module needs to be fixed.

Change review board  Approve or disapprove changes to documents under ehange control;
ensure sufficient resources are available, impacts are understood, etc.

Customer Uses end product; reports problem detected and uses fixes.

Distribution Distributes new releases of system to customers.

Document library Store and distributes copies of documents describing system.

Field engineer

Company’s representative at the customer site.

Integration Given copies of source for modules, produces completed system.

Unit manager Approve proposed changes.

Marketing engineer  Second level of screening of problem reports; sets priority for changes.

Patch coordinator Maintains copies of patches and fills orders for them.

Project contact An individual in each project who checks the database for new problem
reports and assigns them to the correct engineer.

Project manager Approve proposed changes;

Response centre First level of screening of problerﬁ reports; attempts to answer questions
from database and refers novel problems. '

Section manager Approve proposed changes.

Software engineer Actually develops or changes code.

| Testing Tests system and reports problems to éngmeers.

p
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Table 4.2. Message types for Computer Systems Co. information flow model.

Message Field Explanation Set by
Problem report  Customer Customer who had problem Customer
Symptoms Symptoms of the problem Customer
Importance to Customer
customer ‘
Problem number Response centre
Site contact The field engineer for the Response centre
customer, as a point of contact
Product Response centre
Priority Marketing
engineer
Lab. Marketing
engineer or bug
. tracking team
Responsible engineer Engineering
group contact
Diagnosis Software engineer
Proposed Problem Description of problem being
solution fixed
- Approved by change 'Change review
review board board
Modules affected
Text Description of the proposed
change
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Message Field Explanation Set by
_Document Problem
change
Document
Proposed change
Level of change see text
Project manager
approval
Section manager
approval
Lab manager
approval
Change review board
approval
Submittal Problem Problem being addressed
Reason for change
Project manager’s Engineering
approval group manager
Modules affected which modules are changed,
deleted, added, etc.
Group with Other modules that must be
submitted '
Integration Special instructions about
instructions compiling, etc.
Depends on Prior changes that must be
included
Text The code for the new module
Comment Proposed solution which proposed solution the
comment is about
Text Text of the comment
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Message. Field Explanation Set by

Solution Problem Problem report for which this is a
solution
Text Description of solution or actual

code

Clarification

Could not

duplicate

Workaround

Software release  Problems fixed List of problems fixed in release

Patch Patch number Order number of the patch

Patch available  Product

Problem fixed

Patch number Order number of the patch
Patch request ~ Customer Customer requesting patch

Patch number Order number of the patch

Since each customer has a single field engineer and there is only one
response centre, the customer does not have to do any search to determine the
correct recipient of the Problem report message.

4.3.2 Response centre

The response centre and field engineers do approximately the same
things, so here I will only discuss the response centre. When the response cenire
receives a Problem report message it filters out user misunderstandings, hardware
problems, etc. For example by looking in the database of previously received
Problem report messages, the response centre may find that the current problem
duplicates a known problem, find a solution to the problem and return some sort
of Solution message immediately. Otherwise, the response centre picks a
marketing engineer based on the product and forwards the Problem report
message by entering the it in the change request tracking system.
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4.3.3 Marketing engineer

The marketing engineer also filters out user misunderstandings, etc. The
marketing engineer can check if the problem reported is a duplicate of a
previously reported problem and if so, immediately return an appropriate
Solution message. If the problem is actually a request for new functionality, the
message is classified as an enhancement request, which so far I don't discuss.
Otherwise, he or she prioritizes the problem. Problem reports are assigned in
change request tracking database to a particular software engineering project
manager, based on the module in which the problem seems to occur.

Determining the module may be quite difficult. In some cases, there is a
separate group, the bug tracking team, that specialize in tracking down
* problems; in other cases, the product engineer may have some default rules that
assign the problem to a particular group (who then in essence play the same
role).

434 Software engineering prdject manager

The software project manager forwards the Problem report message to the
particular engineer who is responsible for the affected module.

4.3.5 Software engineer

The engineer may determine that the problem is actually in a different
module, in which case he or she can forward the Problem report message to the
appropriate engineer. Otherwise, the engineer enters the second stage of
determining a solution to the problem.

44  Solution development and approval |

This stage of the process is internal to engineering and involves software
engineers, engineering management and change control board.

154



44.1 Software engineer

The software engineer gets the Problem report message. The engineer first
identifies the source of the problem. He or she then prioritizes the problem and
puts it in a queue of problem messages waiting to be worked on; the priority is set
by marketing manager.

Once the problem report has been assigned to a particular software
engineer, that engineer must develop a fix that corrects the symptoms of the
problem without introducing any new bugs. The engineer develops a possible
solution and determines which other engineers will be affected by the change
through a variety of mechanisms discussed above. He or she then discusses the
proposed solution with various other engineers. This process is modelled by
having the engineer send Proposed solution messages and wait for the others to
return Comment messages.

If the Comment messages are favourable, then the implementation
proceeds; otherwise, the engineer modifies the solution and goes through the
discussion process again.

If the change requires changes to a change controlled document, then once
the engineer has an acceptable solution, he or she sends a Document change
message to the appropriate managers to request approval of the change. If the
approved Document change message is returned, the engineer can submit it to the
Change review board for approval. Disapproval of a document change by one of
the managers or the Change review board is modelled by having them return a
Comment message which causes the engineer to revise the proposal.

If the problem message was received from another engineer as part of the
decomposed problem, then the engineer skips forward to the solution
implementation phase, since the proposed solution would already have been
prepared, discussed and approved
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4.4.2 Other software engineers

When an engineer receives a Proposed solution message, he or she evaluates
the impact on his module and work schedule and returns a Comment message
identifying the impact. The engineer may also implicitly agree to the proposed
changes to made to his or her modules.

4.5  Solution implementation

The final stage of the change process is the implementation of the
proposed solution.

4.5.1 Software engineer

Once the change is approved, the engineer modifies any documents that
have changed and sends the new documents to the document centre. He or she
then modifies the code for the module and tests the change to assure that it is
correct. This testing often is done with another software engineer, but I did not
model this process.

Once the module passes its tests, the engineer prepares to submit the
change. The submittal must be approved by the project manager; this process is
modelled by having the engineer send the Submittal message first to the project
manager and then sending the approved Submittal message to Integration.

The software engineers can only fix their modules of the system.
Therefore, if the problem involves someone else's part of the code, they must
communicate with that person to fix it. If the change requires modifications to
multiple modules, the engineer needs to negotiate the solution with the engineers
responsible for the other modules. |

I currently model this process by éssuming that the Proposed solution
message contains the details of the decomposition and the negotiation about the
change is included in the solution development process above. To implement
this éhange, the first engineer sends a Problem messages to the other engineers for
each subproblem.
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4.5.2 Integration and testing

When Integration receives the Submittal message, they incorporate the
new module into the latest release of the operating system and test the result. If
problems are encountered, the engineer is sent a Problem report message.
Customers are periodically are sent a new version of the operating system by the
distribution group. |

4.5.3 Patch coordinator

The patch coordinator takes new version of a particular module in the
Submittal message and makes it directly available to the customer. Customers are
notified of the patch by a Patch available message sent (I believe) to their field
engineers. If the field engineer recognizes that the patch fixes the customer's
problem he or she sends a Request for paich message to the Response centre, who
returns a Patch message.

5 Intentional model
The model itself is included as an appendix to this chapter.

This mode] focuses on the coordination around the software engineer,
which includes the task assignment process and the process by which engineers
look for interactions between modules.

To simplify the model, I did not explicitly include the fact that tasks are
assigned to engineers through the STARS database; instead, I assumed that -
marketing engineers could communicate directly with the software engineers. A
second omission is the testing process and error recovery in general. These
models show the main flow of the change process; they do not include the
(extensive) knowledge necessary to recover when something goes wrong.
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INFORMATION-FLOW MODEL
FOR COMPUTER SYSTEMS CoO.
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4-2

INTENTIONAL MODEL FOR
COMPUTER SYSTEMS CoO.

Sorts

engineer isa person

fix

manager ilsa person
marketing-engineer isa engineer
module

new-release isa fix

person

product

proposed-fix

software—-engineer isa engineer

_symptoms

Predicates

approved-by (proposed-fix, manager)
fixes-problem(fix, symptoms)
fixes-problem(proposed-fix, symptoms))

in-product (module, product)

known-problem (symptoms)

responsible-for-module (software-engineer, module)
responsible-for-product (marketing-engineer, product)

uses (module, module)
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Functions

module (symptoms)
product (symptoms)

manager (person)

Models of individual actors

Customer

know (customer, symptoms)

want (customer, have (customer, Fix} A fixes-problem(Fix,
Symptoms) )

can (customer, talk-to(customer, response-center))

know (customer, can(response-center, determine-fix-for-

bug (response-center, Symptoms)))

determine-fix-for-bug(Performer, Symptoms)
Add: JFix: have (Performer, Fix) A
fixes-problem(Fix, Symptoms).

Response Centre (rc)

can{rc, lookup-fix-for-bug(re, Symptoms))
can(rc, locate-bug-in-product (re, Symptoms))
know(rc, responsible-for-product (Engineer,
product (Symptoms)) = can(Engineer,
determine-fix-for-bug (Engineer, Symptoms)))
marketing-engineer (Engineer) =

can(rc, talk~to(rc, Engineer))

lookup-up-fix-for-bug (Performer, Symptoms)

Pre: known-bug{Symptoms) _

Add: JFix: have (Performer, Fix) A fixes—problem(Fix,
Symptoms)
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locate-bug-in-product (Performer, Symptoms)
Add: know{Performer, product (Symptoms))

determine-fix-for-bug (Performer, Symptoms)
Add: Jrix: have (Performer, Fix) A
fixes-problem(Fix, Symptoms)

Marketing engineer (me)

responsible-for-product (me, product (Symptoms)) =
can (me, lookup-fix-for-bug(me, Symptoms))

respensible-for-product (me, product (Symptoms}) =
can (me, locate-bug-in-module (me, Symptoms))

in-product (Module, Product) A responsible-for-
product (me, Product) = JEngineer: know(me,
responsible-for-module (Engineer, Module))

know (me, responsible-for-module (Engineer,
module (Symptoms)) = can(Engineer,
determine-fix-for-bug(Engineer, Symptoms)))

software—-engineer (Engineer) =
can (me, talk-to(me, Engineer))

know({me, can(bug-tracking-team, locate-bug-in-
module (bug-tracking-team, Symptoms)))

can(me, talk-to(me, bug-tracking-team))

- lookup-up~fix-for-bug(Performer, Symptoms)

Pre: known-bug (Symptoms)

Add: JFix: have (Performer, Fix) A fixes-problem(Fix,
Symptoms)

locate~-bug-in-module (Performer, Symptoms)
Add: know(Performer, module (Symptoms))

determine-fix-for-bug(Performer, Symptoms)
Add: JFix: have (Performer, Fix) A
fixes-problem(Fix, Symptoms)
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Bug tracking team (btt)

can(btt, locate-bug-in-module (btt, Symptoms))
can(btt, talk-to(btt, software-engineer))
know (btt, responsible-for-module (Engineer, Module) A
Module = module (Symptoms) =
can (Engineer, determine-fix-for-bug(Engineer,

Symptoms)))

locate-bug-in-module (Performer, Symptoms)
Add: know(Performer, module (Symptoms))

determine-fix-for-bug(Performer, Symptoms)
Add: Jrix: have (Performer, Fix) A
fixes-problem(Fix, Symptoms)

Software engineer (se)

responsible~for-module {se, module (Symptoms)) =
can(se, determine-fix-for-bug(se, Symptoms))
responsible-for-module (se, Module) =
know(se, uses (Other-module, Module)) v
know (se, ~uses(Other-module, Module)})
responsible-for-module (se, Module) =
know (se, uses(Module, Other-module)) v
know({se, ~uses(Module, Other-module))
know (se, responsible-for-module (Other-se,
module (Symptoms)) = can(Other-se,
determine-fix-for-bug (Other-se, Symptoms)))
can(se, propose-fix-for-bug(se, Symptoms))
can(se, implement~fix(se, Proposed-fix))
know (se, equal (implement-fix(se, Proposed-fix),
integrate-modules (integration, module (Proposed-f£ix)))
know(se, can(integration, integrate-modules (integration,
Modules)))
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know(se, plausible (uses(Modulez, module (Symptoms)),

want (Performer, change (Modules)))

determine-fix-for-bug (Performer, Symptoms)
Add: drix: have (Performer, Fix) A
fixes-problem(Fix, Symptoms)

approve-fix (Performer, Fix)
Add: approved-by(Fix, Performer)

propose-fix-for-bug(Performer, Symptoms)
Add: JProposed-fix: know(Performer, Proposed-fix A
fixes-problem(Proposed-£fix, Symptoms))

integrate-modules (Performer, Modules)

Add: INew-release: have (Performer, New-release) A
VModule € Modules: fixes-problem(Modules, Symptoms)
= fixes-problem(New-releases, Symptoms)

implement-fix (Performer, Proposed-fix)
Pre: approved-by(Proposed-fix, manager (Performer)) A
approved-by (Proposed-fix,
manager (manager (Performer)) A
approved-by (Proposed-fix,
manager (manager (manager (Performer))) A
approved-by (Proposed-fix, change-review-board)
Add: have (customer, Proposed-fix)

Integration

can(integration, integrate-modules(integration,
Modules))
fix(Fix) = know(integration, can(distribution,

give {(distribution, customer, Fix))

integrate-modules (Performer, Modules)

Add: INew-release: have (Performer, New-release) A fixes-
problem(Modules, Symptoms) = fixes-problem (New-
releases, Symptomns)
for some Modules
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Distribution

fix(Fix) = can(distribution, give (distribution,
customer, Fix))
know{distribution, want (Customer, Fix))

for some Customers
Lab, section or project manager

can (manager, approve-fix(manager, Fix))

approve-fix (Performer, Fix)
Add: approved-by(Fix, Performer)

Change review board (crb)

can (crb, approve-fix{crb, Fix))

approve-fix (Performer, Fix)
Add: approved-by(Fix, Performer)
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SITE B: CAR Co.

1 Overview of the site

Car Co., a division of an American automobile manufacturer, designs and
mass produces five models of automobiles. In 1988, it produced a total of about
300,000 vehicles and had sales of $5-6 billion.

1.1 Data collection

I began my research at this site by discussing the organization and its
basic routines with members of the organization and of an affiliated research
group. Ithen made eight trips to the division’s engineering facilities and
assembly plants for a total of 19 days of interviews and observations. During
these visits, I interviewed 29 people in a variety of positions, including
individuals who implemented the change control process and the managers of
affected groups, both in engineering and in downstream groups.

Most data collection was done in one hour interviews. Ialso spent
approximately one day each with six release or process engineers observing their
routines and meetings. The visit day was chosen to include a group meeting.
When possible, I collected examples of the paperwork each person worked on
and internal documents describing the processes.

In addition, I had access to a study the company had done of its
engineering change process, which included an information flow diagram and
flowcharts for each individual involved. I also collected documents used to
introduce new hires to the engineering groups and processes.
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1.2 Characteristics of the product

The automobile industry is central to the American economy. Recently,
however, Ametican manufacturers have encountered stiff competition from
foreign manufacturers, especially from the Japanese. In general, it takes
American firms longer to bring a new car to market and the overall quality of the .
cars are often lower. Furthermore, many American auto assembly plants are
comparatively inefficient.

Assembled automobiles are sold to dealers who in turn sell them to the
public, who are in general not particularly knowledgeable about the technology.
The market is driven more by styling and image than by technical features,
although cost and quality are increasingly important. Therefore, the push to
introduce new technologies is mostly internal, driven by a desire to improve
quality and reduce cost, rather than by specific demands from the customers.

Automobiles are heavily regulated and the final product must satisfy
regulations concerning emissions, safety, etc. To do this requires an audit trail to
ensure that the car that is designed is the same as the one that gets built. Once
the car is sold, however, its use is not strongly regulated and the company is not
responsible for what the end users do with them, although they do track owners
for warrantee purposes.

Car Co. designs and manufactures several car models. Some models have
similar options and share common systems, while others are unique. Each model
changes in varying degrees from year to year. The 1989 and 1990 models of a car,
while similar in many respects, will have a slightly different body and some
different options and systems and therefore many different parts.

Most car models have numerous options, such as different engines,
transmissions, radios, exterior colours, interior furnishings, etc. Providing these
options greatly complicates the design and assembly of the automobile. First,
each option must be individually engineered and the interactions between
different options anticipated. Second, the correct combinations of parts must be
ordered, delivered to the plant and made available in the correct order on the

174



assembly line. Finally, the plant must be able to produce cars with many
different combinations of options.

1.2.1 Parts and suppliers

Car Co. is primarily an assembler of cars. From their perspective, an
automobile is a nothing more than a collection of parts and an assembly process. -
Deciding to offer a new feature or revise an existing one therefore translates into
designing any necessary new parts and revising the assembly process
accordingly.

Parts, once designed, are usually not manufactured by Car Co. itself but
are instead purchased from suppliers. Some suppliers are also wholly owned
subsidiaries of the parent company while others are independent companies. In
either case, the production is not under the direct control of Car Co.’s engineers.
Instead, Car Co. and the supplier enter into a contractual agreement for a
particular sef of parts.

The engineer must coordinate his design with these suppliers. For the
second two categories of parts, the supplier knows best their capabilities and the
engineer needs to consult with them about what they are capable of providing.
(In many cases, ideas for improving a part originate with the supplier.) For off-
the-shelf parts, there may be a give and take between what the supplier is willing
to produce and what the engineer wants. Owned suppliers in particular may be
less responsive to an engineer’s requests, because they are at least partially
insulated from competition or are balancing requests from many divisions of the
company and attempting to provide a compromise solution.

Once manufactured, the parts must be tested to ensure they meet the
functional specification and quality standards and, in case of detailed control
parts, conform to the detailed design. Car Co. must also coordinate with the
suppliers to ensure that the parts arrive in time for use in the factory. It may take

. .several months to develop the necessary tooling to mass produce parts, making it

difficult to accurately project the availability of a new part.
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1.2.2  Production technology

The design of an automobile is heavily constrained by the demands of the
production process used, which is the assembly line. It is relatively
straightforward (albeit expensive) to design and build a single car. To make
efficient use of their production technology, however, Car Co. must make
thousands of essentially the same car. Car Co. must ensure that the engineering
division produces a single design and that sufficient information is available in
the design to allow the desired car to be mass produced. In particular,
engineering must ensure that all engineers are working with common
assumptions and track which parts are currently being used or tested in proto-
type cars to be able to precisely specify what parts are to be used in the
production cars.

Assembly processes must be carefully planned and tested in advance. The
steps the assembly process must be decomposed and assigned to the plant
workers in units that can be done by a single person in about one minute.
Specialized tooling must be developed for many of these operations. At one cara
minute, there is little time to recover from any problems and any difficulty is
quickly magnified by the number of cars it can affect. Even seemingly
insignificant problems may stop the assembly line and keep the plant closed until
they are resolved (a so-called “no build” condition), costing the company literally
millions of dollars in lost production.

Interactions between engineers and manufacturing personnel in the plant
are complicated by the geography. The engineering department is located in the
Detroit area, but the plants that actually assemble the cars are located as far away
as Texas. Even the closest plant is about fifteen minutes away by car. In these
cases, it is difficult for the engineer to personally inspect the production
processes.

On the other hand, the constraints of mass production do remove some
-.problems for engineering. First, the inflexibility of the production process itself
tightly controls the content of the product. Given a set of parts, the plant can do
little more than assemble them (albeit correctly or incorrectly). More
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importantly, the cars are not customized for a particular customer. They do have
.options, but all options are designed in advance.

1.23 Commonality

As mentioned above, several of Car Co.’s car models share common
features and systems and therefore common parts. Furthermore, these models
may be produced simultaneously on the same assembly line, requiring consistent
production processes. Commonality reduces Car Co.’s costs by reducing the
number of parts that must be re-engineered and the tooling necessary and by
allowing larger runs, but it may increase the work necessary to coordinate
changes between several uses.

1.3  Characteristics of the organization
1.3.1 Engineering department

Product development is done by members of the engineering department,
headed by the Chief Engineer. Individual engineers are matrixed between
functional areas and car models. Figure 5.1 shows the overall organizational
structure of the engineering and manufacturing departments.

Work on a particular car model is done under the direction of a project
manager, called a Vehicle Chief, who heads a Vehicle Team. The Vehicle Chiefs
report (indirectly) to the Chief Engineer. The vehicle teams are the interface
between engineering and other groups, such as marketing, who may influence
the design of the car.

Physically and organizational, engineers are divided into six functional
teams; each team is responsible for a single vehicle system. There are teams for
(1) the body, (2) body interior, (3) body exterior trim, (4) chassis and drive train,
including enginés, (5) electrical, and instrument panel and (6) heating, ventilation
and air-conditioning. (For some systems, such as the chassis and drive train,
major components such as the engine were developed by engineering groups in
other divisions. The system team was responsible for integrating those
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components into the vehicle.) Each team has a head engineer and some number
of release engineers, divided into three or four groups, and supporting personnel
such as designers and draftsmen.

For historical reasons, the functional teams are geographically divided
between two sites with somewhat different procedures (e.g., the sites use
different forms with different names for engineering changes and the procedure
for approving a change is slightly different). The functional heads report to the
head of engineering for that site, who in turn reports to the Chief Engineer.

The functional head engineers have some latitude in their actions and
divide responsibilities within their teams somewhat differently. For example, in
one team, the head engineer has the VSMT (explained below) consider and
approve changes rather than approving them himself. Individual engineers may
also interpret their responsibilities differently. As a result, my description will be
of the “average” team (or engineer), but any particular team may differ in some
details.

Within each team, a single release engineer is responsible for a few dozen
parts, possibly for several car models. Some engineers work on multiple car
years for the same sets of parts; others work only on future or current programs.
An engineer may keep working on a particular model year throughout its
development or he may turn the design over to another engineer at some point in
its development.

Each release engineer has a few development engineers working with him.
The release engineers determine the necessary functionality and outline of a part;
the development engineers then do the actual design. The development
engineers report up a different hierarchy to the functional head. Actual detailed -
drawings of parts are produced by draftsmen in a drawing room, which again is
supervised in a different hierarchy.

The experimental groups within engineering are responsible for
assembling test vehicles to support the early phases of the engineering process.
These groups include an experimental specifications group, a small purchasing
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department and a garage that assembles prototype cars. A testing group
manages the tests that are performed on these vehicles.

The specifications group stands between the engineering division and the
other divisions in the company. This group takes an engineer’s descriptions of
the usage of each part and enters it into a computer system. These formal \
‘descriptions are then used by other groups to determine, for example, how many
of a given part are necessary to build a given mix of automobiles. Other groups
support engineering in a a variety of ways, e.g., by assigning part numbers to
new parts.

1.3.2 Material

The material groups handle purchasing parts, scheduling shipments of
parts to the plants, etc.

1.3.3 Manufacturing

The assembly process is developed by a separate group of process
engineers, who report to 2 head of manufacturing engineering, under the
manufacturing manager. These engineers develop tooling for the plant and write
production assembly documents which describe how to assemble the parts into a
car.

1.34 Plant

Each plant has a plant manager and a production manager who also
report to the manufacturing manager.
2 The engineering development process

To understand the process of making changes to the design of an
automobile, we first must consider how engineering works in general.

The engineering process begins with a high level specification of the
desired car, prepared by a marketing group, and produces a design, not an
automobile. The design specifies the form and function of each part, describes
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how many parts are necessary, how the parts are assembled into assemblies and
assemblies into cars and even how the results should be tested.

Work proceeds simultaneously on as many as six model years for each car
model. The engineering process for a particular model year begins about five -
years before the production of the first saleable car and finishes when that model

year stops being produced. During this time, the design progresses though
numerous design phases.

2.1  Concept development

The earliest stage of design for an entirely new car model is the concept
phase, where a new car is developed from the ground up. The timing in this
phase is indefinite; many possible cars will be considered but most will never be
built. These concept cars will be shown to various groups to gauge their interest
in the car; the most promising new designs may be developed further and
eventually turned into proposals for a new product. When a proposal is
accepted, the development process enters the next phase.

2.2  System definition

The design for a new car or a new model year of an existing car begins
with the development of a high-level specification. This phase typically takes
about a year and begins about four and a half years before the car begins
production (i.e., in the summer of 1990, the 1994 model cars were in this phase).

The outward appearance of the car is designed by a styling group. This
group produces a full-scale clay model of the exterior of the car and mockups of
the interior, giving the surface definition within which the engineers must work. ..

Simultaneously, a specification is prepared listing the features and options
to be offered or the technology to be used for each car system. Changes between
model years are decided by a planning group. For example, the planners might
decided that the electrical system of a particular model will be a carry-over (i.e.,

181



essentially unchanged) in 1990, have small revisions in 1991, be a carry-over in
1992 and be completely redesigned in 1993.

2.3  Design and development

Once the initial high-level description of the car is finished, the car goes
into development. This stage also takes about a year, beginning about three and
a half years before production (in the summer of 1990, the 1993 model year was
in this phase). The final high-level specification should be completed early in this
phase.

During this phase, engineers work with suppliers to develop the parts for
the car. Each vehicle system and individual part is designed and carefully
drafted, usually based on the previous year’s design. Between model years there
is often a considerable amount (as much as 90%) of “carry-over,” meaning that
the same parts are used in multiple model years.

To test the functionality of a proposed design, the engineers create
mockups or breadboard systems, called preprototype parts [B7, p. 1]. A full-
scale model of part of the car, called a buck, may be constructed out of wood.
These bucks are used to work out details of the placement of parts or to ensure
that there is sufficient space for a new part.

Some tests are performed on the preprototype parts in laboratories on the
individual parts or isolated systems; others are done at test tracks with the
system installed in a test car. The results of the tests are fed back to the engineers
who use them to identify problems with their designs.

During this phase, Car Co. contracts with parts suppliers for samples of
any new parts for use in component and systems tests. These suppliers begin
supplying samples of the new parts towards the end of the phase (typically about
ten copies of each part are produced). These prototype parts satisfy the design,
-“but might not be manufactured by the actual process (e.g., they might be
handmade). The parts are used for environmental and functional tests.
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To build the sample parts, the supplier must be given the engineer’s
design. A group called experimental purchasing handles the contracts and
payments for prototype parts. This process is carefully controlled because
building parts can be quite costly: tooling for a part may cost tens or hundreds of
thousands of dollars. Car Co. usually pays for the tooling costs for the sample
parts so it owns the tools necessary to build them.

When an engineer finishes the design of a part, he releases it. Releasing a
design means making the drawings of parts and assemblies available for use by
downstream groups. To release a part, the engineer supplies the the finished
drawings and usage information to a specifications writer. These specification
writers are physically located in the different engineering groups; each group has
between 7 and 15 specification writers.

The specification writer translates the engineer’s informal description of
the part and enters a formal description in a computer system. For each part, the
system stores two kinds of information: a base record, giving the part number
and information about the part itself, such as material and finish, and a usage
record, saying how many of the part are necessary for each car, where they are
used and which engineer is responsible for the part in this use.

The necessary quantity of a part may vary, since some parts are used only
for particular options; therefore, each usage may have an option code, indicating
the options with which it is used. For example, a standard part used on all cars
has no option code; an air conditioner has a code indicating that it is used only
on cars with the air conditioner option. If cars with air conditioners need a
different part than cars without (e.g., an instrument panel with or without
controls for the air conditioner), then one part has a code indicating it is used
only on cars with air conditioners and the other, only on cars without.

For prototype cars, the parts information is only needed within
engineering and the release is handled by a group called experimental
specifications, internal to engineering. When a new part is designed, it is given
an experimental part number and the new part information is entered in the
experimental parts database. When an engineer orders a prototype car, the
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experimental specifications group create a bill of materials, indicating what parts
-are necessary and orders any necessary stock parts. An experimental build
group then builds the vehicles, carefully noting any problems they may
encounter. '

A prototype car is one that is hand built using the prototype parts from
suppliers. Car Co. typically builds on the order of one hundred of these cars for
each model each year. Each engineering group initially has a few prototype cars |
in which to test their systems; some of these prototypes are hybrids, that is, a
current production car (e.g., a 1989 car straight off the assembly line) with a
particular system upgraded to the model year of interest using pilot (1990) and
prototype (1991) parts. Using a production car as the basis for the prototype
saves time and money, since much of the car is already built, but it can lead to
problems if there are late changes to the production or pilot cars (i.e., to the 1989
or 1990 model year parts). These changes would typically also be intended for
the 1991 model year, but they would not appear in the prototype.

Later in the phase, the different systems are integrated in a complete
prototype which reflects the current design of the model year. These cars are
used, for example, for durability tests or for acceptance rides, where the
executives of the division drive the car before approving the design.

24  Design validation

The design validation phase takes about eight months and is completed
approximately one year before the start of production. The 1992 cars were in this
phase during the summer of 1990.

During this phase is the date, called the 100% release date, by which all
parts for a particular model are to be released. This year, for example, the 100%
release date for the 1991 model of one car was 19 September 1989. Parts are
released all through the cycle, though, especially carry-over parts, since there is
less uncertainty about their design. Once a part is released, any change requires
informing all users of the design and having them redo their work, so engineers
typically wait until the last minute to release new parts. In order to allow the
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downstream groups time to function, an engineer might prerelease a part, that is,
.give them copies of the drawings and a preliminary specification, before formally
committing to the design.

- For a production release, the design is provided by the engineer to the
specifications group to be distributed to the various downstream groups in the - -
division for further processing. For a typical car model and year, there were in .
total about 30,000 releases and rereleases over the five years from concept to
introduction [B2, p. 15]. If the part is a new part, it must first be assigned a
production part number, which replaces the experimental part number used
during development. Next, the base and usage information are entered in the
engineering parts database. This information is then transmitted electronically to
a central system that checks that the information meets certain technical
standards. From there it is redistributed to downstream systems such as the
materials management database, which advises the buyers of the need to find a
supplier for the new part.

As the designs are finalized, the assembly processes and necessary tools
are developed by the manufacturing engineers. The suppliers begin to mass
produce the parts and supply samples of production quality parts. These
samples, called pilot samples, are built with the actual production tooling using
the same processes that will be used for production parts. Pilot samples are used
for further tests to ensure the functionality of the design.

2.5 Product validation

During the production validation phase, the basic idea seems to be to test
the details of the design and especially the production processes to ensure no
bugs are left.

During this phase is a target date for 100% sample approval, that is, the
date by which all parts should have been approved by the testing department for
use in production cars. These tests are done on the supplied pilot parts and
include both tests of material quality and checks that the parts being
manufactured actually match the design.
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As part of the production validation phase, Car Co. does a pilot build.
The 1991 model year cars went through pilot build during early 1990. For pilot
build tens of cars are built using pilot parts on the production assembly line,
mixed in with the regular production cars. This build is used to test the assembly
processes and tooling.

2.6 Production

The final stage of the design cycle is when the car finally goes into
production. The 1990 model year started production in early August 1989 and is
currently in production. Production continues until mid-summer. Then the
plant shuts down for a short time while the production line is reconfigured for
the next model year, a process called change-over.

During production, however, an engineer may still be called upon to solve
problems in the plant. Most of these problems are found in the first few days of
production, called start up. For the first several days, the assembly line is run
very slowly, building one car at a time until the various bugs are ironed out. The
line speed is gradually increased over the first few weeks until the plant is
running at full speed.

2.7  Simultaneous engineering

Historically, engineering designed an automobile and “threw the design
over the wall” to the downstream groups to implement. If there were problems
with the design, then the downstream groups bounced it back for additional
work. This process might be repeated several times if there were additional
problems or if the solution did not work. In any event, the downstream groups
sometimes had to go to great lengths to work around problems that could have
been easily avoided in the design.

To avoid these inefficiencies, the company is now attempting to move to
simultaneous engineering. Simultaneous engineering means that the engineers
discuss a proposed design with the various downstream groups as they are
working on it, to ensure that what they eventually come up with is satisfactory to
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all users of design. Other groups can then begin working on their contributions
in parallel. Ideally, a design is refined in face-to-face meetings, rather than
iteratively. Car Co.’s managers hope that moving these interactions upstream
will quicken the design process and result in a better design for an automobile
that can be assembled more quickly and with higher quality.

Previously, the various individuals working on the same parts in different
groups might never meet directly. As part of simultaneous engineering, various
cross-departmental groups have been established. For each vehicle system, there
is a group called a Vehicle System Management Team (VSMT) headed by the
functional head engineer for that system. The VSMT oversees the design of the
entire vehicle system and includes the chief system engineer and the managers
from various downstream departments. In one case, the VSMT rather than the
functional head engineer gives the final approval for each change proposed.

Each design engineer is a member of a group called a Product
Development Improvement Team (PDIT) that helps oversee the parts for which
the engineer is responsible. These groups included individuals from departments
including purchasing, process engineering and even first-line supervisors from
the affected areas of the plant. These individuals can provide the information
necessary for the engineer to propose a change. For example, the financial
analysis of a proposed change will be done by someone from the financial
department, using information supplied by the engineer, purchasing and others.
The teams meet regularly to discuss their system or parts; among other things,
they track the status of changes that are being made.

3 The engineering change process

In this section, I will describe the engineering change process and show
how it fits in the general engineering work flow. I will mostly focus on changes
to parts which involve the release engineer. Changes to processes, which do not
affect the form, fit or function of parts, will only be briefly touched on. Iwill first
discuss the need for changes and then the processes involved in making these
changes.
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3.1 Reasons for changes

Parts may be changed for many reasons. From the release engineer’s
point of view, all changes are changes to the documentation describing the car,
either the drawing of the part or the usage information, recording how many of a . -
particular part are used on each car, for each combination of options. The actual
parts are supposed to match the documentation, so changing the documentation
sets off a corresponding change in the parts. Different kinds of changes result in
variations in the change control process.

New model. Most changes are made from one model year to the next.
These are often for marketing reasons, so that the next year’s car is better than or
at least different from this year’s. Improvements in the technology of the car are
mostly introduced in this way. These changes can be released fairly early in the
life cycle of the car and the design frozen.

In principle, the design for a particular year need not change once it has
been finalized. In practice, of course, it often does. For a typical car model and
year, there were about 30,000 releases in total and 5000 changes over the five
years from concept to introduction (B2, p. 15). Changes may be made to both the
- design of the parts and the processes used to assemble them.

Correcting the documentation. The simplest changes to make are those that
do not alter the cars being manufactured, but rather make the design agree with
the car. For example, a change may be made to correct an error in the original
release, such as releasing too many nuts and bolts. In some cases, a part might
not agree exactly with the drawings, but still be acceptable; in this case, the
engineer may change the drawings to agree with the actual part, rather than
forcing the supplier to change the parts.

Other changes involve changes to both the parts and the documentation.
There are two kinds of parts changes, drawing changes and usage changes. If the
new part is interchangeable with the old, then the drawing of the part is changed,
but the part number and usage stays the same. The part will have the same part
number, but a different revision code. If the new part will not be interchange-
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able, then it is given a new part number and the use of the old part is cancelled
and replaced by the new part. Parts may also be eliminated, for example, if a
particular option is dropped. Parts changes may be made for a variety of reasons

Fixing problems. Some changes are made to fix problems with the product
that would prevent it from functioning correctly or being correctly assembled in -
the factory. These changes must be implemented before the car can be mass
produced. For example, problems in prototype build may show that a part can
not be installed as planned (e.g., it does not fit correctly) and must be redesigned.
Other changes are made to correct the production processes. A very few fix
safety problems with the car.

Improving the design. Other changes are made to improve an already
working product. These improvements are intended to reduce costs, either
directly by decreasing cost of a part or indirectly by improving the quality of
parts, thus reducing the need for warranty repairs or making the car more
saleable. The benefits of these changes can be weighed against the cost of
making the changes.

Late changes to the specifications. Changes are often made to satisfy requests
from other parts of the company. These requests sometimes take the form of late
changes to the high level specification. In theory, the specification should not
change once the design process is under way, but the temptation to do so is often
great. For example, the marketing department may request a new option or
standard feature on the cars to counter an offering by a competitor or higher
levels of management may dictate a reduction in the total number of options
offered to reduce costs.

Coordinated changes. Finally, a particular interesting set of changes are
made to accommodate changes made by other engineers. For example, in order
for one engineer to provide a new option, it might be necessary for another
engineer to modify existing parts. Alternately, a part used in several models
might need to be modified to be used on one model.
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Table 5.1. Rate of changes and cost and number of parts involved in changes at different

stages of design.
Stage Rate of change Number of parts ~ Cost of change
Concept development High Only on paper $1
Design and development (prototype) High 10 $1,000
Design and product validation (pilot) Medium 100,000 $100,000
Production Low 100,000 $1,000,000

3.2  Changes at different phases

The cost and ease of making changes differs greatly in the different phases
of the design, as does the need to make changes. (See Table 5.1; the estimates of
the costs were provided by my contact at the site).

Concept development through system definition. During the initial phases of
the design process, changes are constant as the design is progressively refined.
Few aspects of the design are frozen, so anything may change. Since the parts
exist only as an engineer’s breadboard and no money has been spent on tooling,
it costs only about a dollar to make the changes on paper. Therefore there is little
need to control changes and no formal change control process.

Design and development. During this phase, parts are released only through
the experimental system. The sample parts are relatively expensive (e.g., about
$100 each) because they are often hand built, but because they are built in small
numbers (typically tens of each part) the total cost is low.

Starting with this phases, changes need to be tracked to know what parts
have been used on which prototype cars and how they have been tested. The
formal systems necessary are relatively informal, however, since only
engineering is involved. In fact, this is probably the major reason for having
separate experimental systems.
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Design and product validation. Once the parts have been released for
production, the change process becomes more formal. Changes require a formal
change document approved by engineering management and often must be cost
justified.

A large number of changes are made to fix design problems right before .
the pilot gets frozen. It costs more to make changes at this point, since the
production tooling for the parts must be fixed.

Production. Typically there are few changes once the car goes into produc-
tion,which is fortunate, because changes at this point can cost millions of dollars.
A few changes are essential since they resolve “no build” conditions and must be
done immediately. Most will be for cost savings, like leaving out an option or an
unnecessary step in the assembly process; the source for many are the workers
on the plant floor (e.g., foreman calls the engineer and requests a change order
[B2, p. 14]) and may be implemented before the change is formally approved.

Increasingly, Car Co. attempts to batch the introduction of changes to give
the plant uninterrupted time in which to regain its productivity. Every time a
change is introduced, it takes a while for the plant to absorb it and get back to
speed. If changes are constantly being introduced, then the plant is constantly
struggling to adapt. No changes at all are accepted in the first and last few weeks
of the production year. Other changes may be delayed until the next model year,
since the changes may involve large numbers of parts that have already been
manufactured and could cause a substantial disruption in the plant.

*** cite Kim Clark study showing variance in number of changes was an
important negative factor in productivity of plants ***
3.3  Description of the change process
3.31 Focus

For this report, I will focus mostly on parts changes made during the latest
stages of the change process, after the parts have been released. It is at this point
that making changes is most difficult and most expensive and the largest number
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of other groups are involved. I will focus initially on the release engineer and on
design changes and only touch on process changes. Furthermore, I will describe

the current situation, in which simultaneous engineering is being introduced, but
is still new.

.3.3.2 Determining a change is needed

The change process starts with an engineer receiving some report making
him decide that a change is necessary. These reports come from many sources,
including the plant, suppliers, quality control and marketing.

The marketing department may request specific design changes or
features they believe will make the car more saleable, using a formal document
called a Car Division Request. Some changes are necessary as a result of a
change to the high-level specification of the car.

If the supplier of a part has a question about the design or some problem
making the part, their engineers will discuss it with the release engineer, either in
person or over the phone. If sample parts fail to fully conform with the design
during the approval process, the checking room will inform the engineer so he
can determine the necessary fix. As the parts are being tested, the engineer
receives reports of the results in a Test Incidence Report.

Once the car is in production, plant personnel may send an engineer a
formal report of a problem, using a document called a Problem Report, or may
informally request a change by a phone call or by talking to the engineer when he
visits the plant. Some problems may be noticed by the engineer himself on a
visit.

3.3.3 Developing a change

Some changes are straightforward and the engineer simply signs off on
the request. For example, if the specifications group points out that more
fasteners were released than are necessary, the engineer will probably just sign
the necessary change order.
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Other requests may require more discussion to determine the nature of the
problem. Engineers can discuss problems in their weekly meetings with the
PDITs and with the suppliers of the part. They may also visit the plant to see the
problem in production cars. Once the nature of the problem is clarified, the
engineer begins to develop a solution.

The engineer usually discusses a change with other engineers, based on
who he believes will be affected. In many cases, he may just call the engineer
and discuss the proposed solution on the phone. The other affected engineers
evaluate the proposed change and offer their comments. Other downstream
groups may be involved at a PDIT meeting.

In some cases, the solution requires only a change to the assembly process
which can be implemented in the plant with the existing parts and tooling.
Changes to the assembly process are approved by the manufacturing engineer.
The release engineer’s approval is only necessary if the part must be modified in
some way. In some case, the change is implemented even before it is formally
approved. For example, on one visit to the plant, a first line supervisor asked the
engineer to change the procedure for attaching a piece of carpeting to allow
slicing the carpet. The engineer suggested running 50 cars as an experiment to
test the new procedure; the supervisor replied that he had already done that and
it worked fine.

If the change requires a new part, the release engineer discusses it with a
designer who does the actual development of the new part. As with the initial
design, any necessary production drawings are prepared by a draftsman.

3.34 Releasing the change

To release a change, the engineer provides the specification writer witha
hand written change notice. This change includes a marked up copy of the
design showing what is to be changed and any new usage.

The change notice also indicates the desired effective point and what to do
with any existing parts. There are four effective points used: on the first saleable
vehicle (“S5V”), immediately, obsoleting the stock (“Urgent”), as soon as the
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current stock is exhausted (“ASAP”) and with the first use of a new option
("WFUQ”). SSV is used only when the change is absolutely necessary, e.g., to
avoid a safety or emission problem or a no-build condition at the plant. Urgent
means to make the change as soon as the parts are available and it is convenient
to do so, but until then, cars with the existing parts are acceptable. ASAP
indicates that the new and old parts are equally acceptable. WFUO indicates that .
the new part is a necessary part for a particular option. If a part is used in several
model years, there may be different effective points for each year. For example, a
change that is required for a 1990 model may be desirable on the 1989 car, and
therefore pulled ahead if the parts can be available in time.

For a drawing change, the change will typically be effective and the new
parts used after the existing stock of parts is used up (“ASAP”). For a usage
change, the process is basically the same, except the choice of an effective point
and stock disposition becomes more important since the replacement parts are
different from the current stock. The differences may require, for example, that
two parts be switched at the same time. These parts may both be included in one
change notice or the engineer can indicate that two separate changes must be
implemented together.

When the current parts are made obsolete, the engineer can indicate that
they should be discarded or reworked to bring them up to date. Parts that are
obsolete may be given to service division to be used as spares or just discarded.
If there is a large supply of obsolete parts, the materials group may negotiate
with the engineer to have them reworked to avoid wasting the parts.

The specification writer prepares a formal engineering change notice that
indicates what part is being modified, describes how the part is being modified
and gives the reasons for the change. While typing up this change, the
specifications writer can check that the information given is correct and that the
change is consistent. For example, the specifications writer will check that the
part numbers and quantities on the change match those on the drawing. They
may check that the new part really will be interchangeable; if it will not be, then
the change becomes a usage change instead.
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The specification writer then returns the engineer change notice to the
engineer for proof-reading and to be formally approved. The marked up
drawings are sent to-the drafting room to be finished, either by the specifications .
group or by the engineer himself. Once the drawings are ready, the change
package can be issued in the same way as an ordinary release.

3.3.5 Thechange is approved and distributed

To take effect, the change needs to be approved and the engineering
change notice signed by the engineer’s manager and the functional head engineer
for the particular vehicle system. In one of the engineering sites, the change also
needs the approval of a change committee. Getting a change approved may
require the engineer to submit a financial analysis showing the cost of the change
and any expected savings. For some changes, the approval of other groups, such
as a certification engineer, may be necessary. Obtaining the necessary signatures
usually takes several days, but for important changes the paperwork can be
walked through and completed in hours. Once the change notice has been
signed, it is returned to the specifications group who distributes it. The new
information in the parts database is transmitted electronically to the various
downstream groups as for a regular release.

Some changes are complete once they are issued. For example, if an
acceptable sample part fails to agree exactly with the design, the engineer may
choose to alter the drawing to fit the actual parts rather than force the supplier to
alter the parts. In this case, a change notice must be issued to alter the drawings,
but the change will be immediately complete. In general, however, the various
downstream groups need to act in order to implement the change.

3.3.6 Other engineering groups prepare for the change

Once the change document is issued, other engineering groups may
official implement their changes. For example, other release engineers may go
ahead with other parts of coordinated changes. If the change affects the plant
(i.e, part numbers, quantities, options, or illustrations change) then the process
engineering group must change the build documents. These documents describe
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the steps necessary to assemble and test the car on the plant floor. If necessary,
the process engineers may request illustrations of the new parts or assemblies
from the design room. At some point, the production tooling must be changed
for the new parts. The official notice comes too late in the process to trigger these
processes, but it does confirm that the change will take place as agreed.

3.3.7 Supplier starts to produce new parts

Once the purchasing group is notified of the change, they pick a supplier
for the part and write a new contract to authorize payment for the necessary tool-
ing changes. Usually there is already a supplier, so the choice is clear.
Furthermore, the engineer most likely discussed the proposed change with the
supplier’s engineers, so in many cases, the supplier will already be preparing for
the change even before being formally notified. The supplier tells Car Co. the
earliest date when the new parts can be ready.

Once the tooling is ready, the supplier starts building sample parts and
submits them for approval. These sample parts are checked by the quality
control department to ensure that they match the design. If they do, then the
parts are approved for use in production. If they do not match, the several things
can happen. First, and probably most common, the supplier can fix the part to
make them agree. In this case, if the parts are necessary to support production
and are usable, the engineer may write a permit to allow them to be used
temporarily, even though they are not approved. If the parts are acceptable, the
engineer may change the drawings to match the parts.

3.3.8 The change is scheduled

A large part of the complication of building cars is deciding what mix of
options to build, where to build them and ensuring that the necessary parts will
be available to support the production. The scheduling process starts each week
when the marketing group gives the schedulers the next 8 week of sales forecasts

- and three weeks worth of orders for cars.

A group called production scheduling uses these figures to choose how
many cars of each model to build, which factories to use, the actual order of the
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cars on the line, etc. There may be peculiar constraints that affect this schedule.
For example, several car models may be built on the same assembly line and in
some cases, cars of a particular model must be separated by a minimum distance
on the line to allow enough time for some unique operation. Such a constraint
restricts the output of that model to a maximum proportion of the total output.

Based on the production schedule, the material scheduling group
determines the parts needed. The production schedule includes the options
desired on the cars; this data is used to explode the parts lists to determine the
exact numbers of each part needed and when. This material list is then used to
create supplier schedules, which tell suppliers how many parts to ship to each
plant and when they should arrive.

When material control receives the change notice, they forecast the break
point (i.e., when the change will take effect) and determine which plants need the
new parts and when. The break point is a function of when the supplier will be
able to ship the new part, the stock of the old parts, the plant’s schedule and the
lead times of any other parts needed for the change. This prediction also must
take into account any batching of changes by the plant. In some cases, the
supplier may have to produce more of the current part to cover the demand until
the new parts can be used.

As the forecast implementation date draws nearer, it is fine tuned, based
on actual part availability, amount of remaining stock, etc. A Parts Readiness
group oversees the downstream processes to ensure that all necessary parts will
be available on time and that nothing falls through the cracks. Three weeks
before the forecasted breakpoint, they call to confirm all the data that went into
predicting the breakpoint. At this point, material scheduling also shifts to piece
control, meaning that they actually count the number of parts left and pick a
particular vehicle on which to make the change. Before this time, the
implementation date of the change would stay the same, even if number of
vehicles being built changed. After this date, it is fixed to a particular vehicle.
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3.3.9 Change takes effect

Based on the supplier schedule, the supplier starts to ship the new parts to
the plant. The new build instructions are used and the new parts are used on a
vehicle. When the change does take effect, the identification number of the first
car affected is recorded and the change process is complete.

3.4  Why are changes difficult?

Changes are difficult for several reasons. First, the car is only imperfectly
decomposed into independent subproblems. There are many possible
interactions between different parts so a change made by one engineer can affect
many others. For example, in one car the engine compartment was shaky. To
stiffen it, a cross brace was added, but this brace then interfered with an air
conditioning pipe.

Second, each engineer operates with incomplete information about the
design and the actions of the other engineers. For example, in one car a beam
had a hole punched in it, seemingly for no reason. Punching the hole was an
additional cost that could be eliminated, except that none of the engineers could
remember why the hole was there, making them reluctant to simply omit it. (As
it furns out, the hole had been added for a pipe which was later rerouted.)

3.5  Perceived problems with the change process

The managers and engineers at Car Co. perceive a number of problems
with their change process (B13, p. 52-59). The first and most common complaint
is that there are too many changes. If parts were released once, there would be
13,000 releases for a particular model. In fact, there were 40,000, so each part was
released on average three times. (Part of this number is due to carry-overs, since
if a part is used in multiple years, then any change must be released separately
for each year.) There must be a balance, since the same resources are used to
handle changes as the original design.
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A second complaint is that the company does not exercise enough
discipline in when they introduce changes. One expensive source of changes, for
example, are late changes to the high level specification of the car. It is difficult
to tell how important a change is and there is a lack of information for making
business decisions on when to implement them. In general, the managers want
to eliminate bad changes (i.e., ones that have unanticipated negative effects) and -
move the good ones earlier in the process. One way to do this is to eliminate the
need for changes late in the process, by freezing the specification earlier and by
releasing and using production parts for the prototype instead of after. Doing
this would allow more time to test changes and the final design, hopefully
reducing the number of problems.

A final class of problems seem to relate to information that is not fully
shared. For example, one member of a downstream group complained about the
problems caused when a supplier commits to a change based on discussions with
an engineer before the change is fully approved by the various downstream
groups. Several interviewees echoed this concern, saying that suppliers should
only make changes after receiving approval from supplier management. Usually
the limiting factor in making a change is the availability of the new parts, so the
supplier begins to make the change based on discussions with the engineer in
order to reduce the lead time. Occasionally, however, having the supplier
produce new parts too early can be a problem because the old parts are still
needed. For example, a change may be delayed because of the plant schedule or
problems with other necessary parts or tooling, factors which the downstream
groups know but which the individual engineers might not.

Information flow between the engineer and the plant floor can also be
disrupted. For example, on one tour of the plant, an engineer noticed that an
interior piece for which he was responsible seemed to fit poorly. By walking
backwards along the assembly line, he eventually found that the problem was a
change that had only been half implemented. Originally the interior piece was
- held away from the frame of the car with spacers. To eliminate the spacers, the
frame piece had been changed to bulge out by the same distance. When the new
body pieces were used, the spacers should have been cancelled, but the engineer
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found they were still being used, pushing the carpeting out further than
intended.

4 An information-flow model of the change process

The information-flow model for this site is presented in an appendix to
this chapter.

The model includes a total of 19 kinds of actors; a brief description of each
is shown in Table 5.2. Some actors are individuals, e.g., the designer, engineering
manager, head of functional area; most are groups, e.g., marketing, drafting
room, purchasing.

5  Intentional model of the change process

The full model is included as an appendix to this chapter. Constructing
the models revealed several interesting characteristics of the engineering change
process in this site.

Formal change process lags actual process. First, the formal change
notification process is frequently several months behind the actual
implementation of changes. For example, if the change document is sent by mail,
getting the authorization signatures can take several weeks or even months.
Preparing and distributing the official change notice is also time consuming. As
a result, the official notice is usually too late for other release engineers to use it
as an initial notification of a change.

Computers support mostly the formal process. Second, computers (and
information systems in general) are currently used mostly to support the formal
processes. For example, official change notices are entered in and produced by a
computer system; in contrast, an advanced engineering change notice might be a
photocopy of the change handwrite and a change proposal, a phone call or a
face-to-face meeting. In many cases, the actors work around the computer
systems to handle advanced information. For example, the parts readiness team
maintains a database of new parts, which is created manually from advanced
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release information and used to check the development of the on-line official
release information.

Table 5.2. Actor types for the Car Co. model.

Type of actor Basic function

Dealers order and sell cars

Designer work with layouts to see how parts fit; works out details of design

Drafting room does actual 3-D drawings with dimensions, as required for production
and assembly

Engineering manager manages a small group of release engineers; approves changes and

releases from those engineers

Head of functional area manages one of seven functional areas; approves changes and releases

from engineers in those areas

Marketing takes orders from dealers and provides sales and sales forecasts to

production scheduling

determines features of car to be offered

Material scheduling  determine where and when parts are needed and provides suppliers and

plants with shipping schedules

Parts readiness checks that parts will be ready to support production
Plant assembles supplied parts into finished cars
Process engineer responsible for development of assembly processes, which are

documented in assembly documents

Production scheduling determines in which factories and what order on line to build ordered

cars

Purchasing manages contracts with suppliers

buys samples and get estimates or tooling and lead time estimates
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Quality control check that the parts meet the specifications

Release engineer responsible for the design of the parts

Service and warranty feedback from dealers when parts are repaired under warranty or .by
dealer

Specifications maintains part database showing engineering intent

distributes information about engineering releases to downstream

groups
Supplier manufactures parts
Testing test prototype cars and notify release engineer of problems that arise
Tooling develops tools for assembly process
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INFORMATION-FLOW MODEL
FOR CAR Co.
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5-2

INTENTIONAL MODEL FOR
CAR CoO.

Sorts

cars
change
change-request
drawing

engineer isa person
feature

layout

manager isa person
part

person

plant

problem

Functions

part (feature)
part (problem)
part (change)
change (drawing)
change (feature)
change {layout)
change (problem)

manager (engineer)
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manager (manager)

Relations

approved-by (manager, change)

builds (plant, cars)

have-feature (cars, feature)
have-problem{cars, problem)
responsible-for (engineer, part)
physically-interdependent (parti, parts)

Individual models

Marketing

can {marketing, determine-feature (marketing))

know (marketing, responsible-for (Engineer, part (Feature))
= can(Engineer, implement-feature (Engineer,
Feature)))

know(marketing, responsible-for (Engineer, Part)) (for
some Engineers and Parts)

can (marketing, talk-to (marketing, Engineers)) (for some

Engineers)

determine-feature (Performer)

Add: Jreature: know(Performer, Feature) A
want (Performer, builds(plant, Cars} = have-
feature (Cars, Feature))

implement-feature (Performer, Feature)
Add: builds(plant, Cars) = have-feature(Cars, Feature)

Testing

can(testing, find-problem(testing))
know(testing, responsible-for (Engineer, part (Problem))

= can(Engineer, fix-problem(Engineer, Problem)))
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know{testing, responsible-for(Engineer, Part)) (for some
Engineers and Parts)
can(testing, talk~to(testing, Engineers)) (for some

Engineers)

find-problem(Perfomer)

Add: JProblem: know{Performer, Problem) A
want (Performer, builds(plant, Cars) = ~have-
problem (Cars, Problem))

fix-problem (Performer, Problem)
Add: builds(plant, Cars) = ~have-problem(Cars, Problem)

Release engineer

know(re, responsible~for (Engineer, Part)) (for some
Engineers and Parts)

can(re, talk-to(re, Engineers)) (for some Engineers)

know(re, physically-interdependent (Party, Parts)) (for
some Parts)

can(re, evaluate-interdependencies(re, Part))

know(re, plausible (dParts: want (re, Change) A
physically-interdependent {part (Change), Parts),
dChanges: want (re, Change;) A part (Changes) = Parts))

know(re, can(designer, develop-detailed-change (designer,
Change)))

know(re, can(drafting, develop-drawing(drafting,
Detailed-change)))

know(re, can(manager (re), approve-change {manager (re),
Change)))

know (re, can(specifications, release-
drawing (specifications, Drawing)))

know (re, change (Drawing) = Change =
equal (implement-change (re, Change),

release-drawing (specifications, Drawing))



know(re, responsible-for (Engineer, part (Change)) =
can (Engineer, develop-change (Engineer, Change)))

know(re, equal (implement-feature(re, Feature),
develop-change (re, change (Feature)))

know(re, equal (fix-problem(re, Problem),

develop-change (re, change (Problem)))

approve-change (Performer, Change)
aAdd: approved-by(Performer, Change)

develop-change (Performer, Change-request)
Add: JChange: know(Performer, Change) A Change =
change (Change-request)

develop-detailed-change (Performer, Change)
Add: dpetailed-change: know(Performer, Detailed-change)
A change (Detalled-change) = Change

develop-drawing(Performer, Detailed-change)
Add: dDrawing: know(Performer, Drawing) A
change (Drawing) = change (Detailed-change)

evaluate-interdependencies (Performer, Part)
Add: know (Performer, physically-interdependent (Part,
Party)) for some Parts’s

implement-change (Performer, Change)
Add: builds(plant, Cars) => has-change (Change, Cars)

release-drawing (Performer, Drawing)

Pre: responsible-for (Engineer, part (change (Drawing))) =
approved-by (manager (Engineer), change (Drawing))

Add: have (downstream—-groups, Drawing)

Engineering manager
can(manager, approve-change (manager, Change))

approve-change (Performer, Change)
Add: approved-by (Performer, Change)
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Head of functional area

can (manager, approve-change (manager, Change))

approve-change (Performer, Change)
Add: approved-by (Performer, Change)

Designer

‘can(designer, prepare-layout (designer, Change))

prepare-layout (Performer, Change)
Add: dLayout: have (Performer, Layout)} A change (Layout) =
Change

Drafting room

can(drafting-room, prepare-drawing(drafting-room,
Layout))

prepare—-drawing (Performer, Layout)
Add: dDrawing: have (Performer, Drawing) A
change (Drawing) = change (Layout)

Specifications

know (specifications,
equal (implement-change (specifications, Change),
concurrent (inform(specifications, tooling, Change),
inform{specifications, purchasing, Change),
inform(specifications, gquality-control, Change),
inform(specifications, material-scheduling, Change),
inform(specifications, process—-engineering, Change),

inform(specifications, release-engineer, Change))))
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6

SITE C: AIRPLANES, INC.

1 Overview of site

Airplanes, Inc. is a manufacturer of commercial jet aircraft. Itis a division
of a corporation that had total sales in 1988 of $15-20 billion and roughly 150,000
employees.

1.1 Data collection

I began my research at this site by discussing the organization and its
engineering processes with members of a central engineering support group. I
visited the company’s engineering and manufacturing facilities on three
occasions, for a total of 13 days of interviews and observation. During these
visits, I interviewed a total of 20 people, including managers, engineers and
members of various support groups. I also attended several meetings of various
change control groups.

Most data collection was done in one hour or longer semi-structured
interviews. Ialso spent an afternoon each with an engineering manager and an
engineer observing their daily routines. One such visit incdluded a group
meeting. When possible, I collected examples of the paperwork each person
worked on and internal documents describing the processes. Ialso attended
meetings of two change control boards.

Finally, I attended a one day class that provided an introduction to
engineering operations for new employees. I also collected copies of various
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training materials that extensively document the engineering and engineering
change processes, totalling several hundred pages of flowcharts and descriptions.

1.2 Characteristics of the product

This discussion of the aerospace industry draws on (“Civil aerospace,”
1988; Barker, 1989; Covert, 1989; Simpson, et al., 1988) and especially (Newhouse,
1983).

Technically, Airplanes, Inc. is in the airframe industry; other companies
design and manufacture the engines that power the aircraft. The airframe
industry has total sales of $50 billion a year and is one of the largest American
exporters. In addition, it is one of the few industries that American firms still
dominate, although in recent years Airbus has grown considerably. In addition,
Japanese companies are known to be interested in entering the industry
(“Sincerest form,” 1989); they already make large portions of the Boeing 767
among others (“Forget,” 1988).

1.21 Complex product

Commercial jets are among the most complex of products. A 747, for
example, has 175 miles of wire and literally millions of parts (“Trying times,”
1989), purchased from 2000 suppliers (“Strain,” 1989). Furthermore, aircraft
make extensive use high technology and new materials. Reducing the weight of
an aircraft by even one pound saves a large amount of fuel—and therefore
money—over the life of the plane.

Long product life cycle. One interviewee estimated that it takes about 3 1/2

years from the start of development of a new aircraft to rolling out the first plane _.

and as long as a year after that for testing and certification. Developing a new jet
engine fakes even longer, from 4 1/2 to 5 years. The lead time for certain parts is
also long; for example, landing gear struts may take more than two years to
~'make. These parts must therefore be ordered even before the final design is
completed. "A particular model of airplane may stay in production for as long as
twenty years, undergoing constant evolutionary changes.
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An individual jet may be used for as long as twenty years. During this
time, of course, many of the components of the plane will be rebuilt or replaced.
The lifetime of an airframe itself is often measured in takeoff-landing cycles,
since it is the pressurization and depressurization of the body of the jet that most
stresses the structure.

Learning curve. Manufacturing aircraft has a steep learning curve: the first
planes built are much more expensive than later ones. The combination makes
pricing aircraft quite tricky. The price must be set based on an average cost that
may not be achieved until the 400th airplane, which might not be delivered for
years; as a result, a program make take 10 year or longer to become profitable.
The initial sales of a new airplane model are particular important, since they
serve to drive the process the furthest along the learning curve.

If the plane does not sell well, the program may never become profitable.
Lockheed, for example, left the commercial jet aircraft industry in 1981, after
loosing an estimated $2.5 billion on the development of the L-1011. At this point,
no single company has the resources to develop an entirely new aircraft alone.

1.2.2 Regulatory environment

Design standards. Building airplanes is an exacting business. To ensure the
safety of the airplanes, the Federal Aviation Administration (FAA) sets technical
standards for the design of the aircraft. These standards are enforced with a
unique self-regulating system in which much of the oversight authority of the
FAA is delegated to engineers of the aircraft company itself. These engineers,
known as Designated Engineering Representatives (DERs), review the design
and design processes to ensure compliance with Federal Airworthiness
Regulations (FARs).

This delegation of authority is necessary for two reasons: first, the FAA
does not have sufficient manpower to check the entire design; and, second,
because engineers who are good enough to carry out such a check are also good
enough to design airplanes and would not want to work for the FAA
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(Newhouse, 1983). Despite the obvious conflicts of interest, the system appears
to work well.

Manufacturing standards. The FAA also sets requirements for the.
manufacturing processes; these standards are overseen by Designated
Manufacturing Engineering Representatives (DMERs).

The manufacturing process must ensure that the finished aircraft exactly
matches the designs. Each part, assembly, etc. is carefully inspected and any
problems are documented and corrected. Many parts must be traceable; it must
be possible to determine exactly what parts are on each airplane. Maintaining
this control of the configuration requires careful and thorough record keeping.

The organization is what (Roberts, 1990) calls a high reliability
organization. Quality control procedures account for about 15% of the airplane’s
cost (Newhouse, 1983, p. 94).

Certification. Before a new model of plane can be used, the design must be
certified. Certification is a legal process that provides evidence that a certain
airplane has been inspected, tested and accepted by the FAA. To certify a plane
requires extensive tests. Major modifications to the design, such as adding
different engines, requires recertification. For a new plane, the certification
process takes about one year and may cost on the order of $100 million.

1.2.3 Market environment

The market for aircraft is highly competitive, with only a small number of
buyers and sellers.

Low production rate. The total number of jet aircraft manufactured is quite
small. Boeing, for example, has made more jet aircraft than everyone else
combined and delivered its 5 000th jet aircraft in only 1986. Airbus
manufactured 71 planes in 1988 and planned to build 101 in 1989. As a result,
building airplanes is very much a batch process; component parts are
manufactured in lots of ten rather thousands.
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Suppliers. There are only three major manufactures still making
commercial jet aircraft: Boeing and McDonnell-Douglas, two American
-companies, and Airbus, a consortium of European aerospace companies. In 1987,
one estimate gave Boeing 51% of orders placed, Airbus 30%, McDonnell-
Douglas, 17% and British Aerospace and Fokker, 2% between them (“Civil
aerospace,” 1988, p. 7).

Buyers. On the demand side, there are again only a small number of
buyers, the major airlines. Every order is important and the manufacturers
compete strenuously for each sale. The airlines have become highly skilled at
playing the manufacturers against one another for the best prices on aircraft. In
the past, airlines would go as far as to spread their orders among companies in
order to ensure a level of competition that would hold down prices.

Changing market environment. What is important to buyers changes as the
environment changes, but because of the long product development cycle there is
a significant lag in the ability of the manufacturers to meet those demands.

For example, the planes now in production were mostly designed in the
early 1980’s when fuel was 40% of the cost of running an airplane and were
therefore designed with fuel economy in mind. Today, however, fuel is only
about 16% of the cost; now the cost of financing the plane is about half the total
cost (“Civil aerospace,” 1988, p. 8). As a result, airlines today mostly want
cheaper planes and innovative financing.

Furthermore, the tax laws have changed to make owning planes less
attractive. Therefore, airlines now mostly lease the planes. Many airlines have
sold their planes to consortia of banks which lease them back. About 20% of the
planes sold are bought directly by leasing companies (“Aerospace,” 1989). In
general, leasing companies are much less interested in technical details of pl;'anes
and much more so in financial arrangements.

During the last several years, air travel has grown rapidly. Airlines, by
and large, have done well and have been able to afford to replace aircraft. Asa
resulf, there is currently a long lead time for purchasing planes; the backlog of
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orders for some models stretches out to 1994-1995. The total backlog is $54
billion or a little more than 3 years production.

The airframe companies are reluctant to increase production or invest
heavily in new facilities, however, because with a downturn in the economy, the
orders may disappear. (As I write this, the economy is beginning to move into a
recession and several airlines are on the verge of bankruptcy, suggesting that
these fears were not unfounded.) Also, hiring new employees disrupts learning
curve, since resources must be spent on training instead of on building airplanes.

1.24 Support

Finally, support is an important part of the product. An unusable airplane
earns no money for the airline and can seriously disrupt their schedules. The
airlines demand assurance that their investment is protected. To meet this
demand, aircraft manufacturers have facilities all over the world; if a plane has a

. problems, company will send parts, service teams, etc. An out-of-service
airplane has the highest priority for parts or manpower.

In addition, an airplane must be maintained by the airlines to conform
with the specification and with federal regulations. A large part of the profita
-manufacturer can expect from a sale comes from selling spares and service over

the twenty-year life span of the aircraft.

1.3  Characteristics of the organization

1.3.1 Structure

Airplanes, Inc. is organized around products; each model of airplane is
developed by a new project organization. These projects use the resources of the
various departments, including engineering, manufacturing, materiel,
fabrication, etc. in a matrix fashion. For example, the engineering division
supplies the necessary man-power to staff a new airplane project as it goes
through the various stages of the development process.
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1.3.2 Formal controls

At Airplanes, Inc., a heavy emphasis seems to be placed on formal control
mechanisms. A large planning group develops plans for each step of the design
and assembly of each aircraft; an important part of making a change is planning
the change and changing the plan. One interviewee claimed that project
engineers are forbidden to talk directly to workers in the plant (C, p. 95); if they
need input, they can ask for a formal meeting. Manufacturing problems are
handled by a formal liaison function that represents engineering to
manufacturing.

In part this lack of communications is due to a lack of interest.
Historically at least, engineering did not look for much input from
manufacturing; manufacturing took whatever engineering designed and built it.

A major reason for this emphasis on formal procedures is the high level of
turnover. People move around as the work load on projects rises and falls. For
example, building the first of one plane model took about 12 million man hours
of engineering effort; building the second one took only 2000 man hours more.
Many of the engineers involved in the initial design were redeployed elsewhere.
As a result, the process can not rely on individuals, since those individuals likely
will not be there over the long term (C, p. 99). There is a belief that a large
proportion of failures are due to informal procedures and dependence on
individuals.

Second, for regulatory reasons, all decisions must be documented. This
again stress the use of formal procedures.
2  The engineering development process

To provide a background against which to understand the change process,
I will first briefly describe the process of developing a new airplane and the on-
going manufacturing process.
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211 New airplane program

Developing a new model of airplane is an enormous undertaking that is
done infrequently. Boeing, for example, has developed 6 models of commercial
jet aircraft, of which four are still in production, the 737, 747, 757 and 767; the 777
is reportedly in development. Since 1972, Airbus has developed four models of
airplanes, the A300, A310, A320 and A330, A340; McDonnell-Douglas currently
sells two, the MD-80 and MD-11.

Developing an entirely new aircraft is extremely expensive. One source
estimated that to develop a new medium-sized aircraft would cost at least $2
billion (“Civil aerospace,” 1988) and to design the new engines, $1.5 billion. As
this figure approaches most manufacturers’ entire net worth, airframe
manufactures must literally “bet the company” each time they decide to develop
a new plane. More often, the manufactures choose to develop a variant of an
existing plane, e.g., by lengthening (stretching) an existing model to add more
seats, making a freighter version, etc. The 747, for example, is offered in 11
variations (Simpson, et al., 1988).

2.1.1 Program definition

In the initial open ended stage of development, the manufacturers attempt
to determine what kind of plane to build. During this phase many possible
airplanes will be proposed, with various numbers of seats and range. Engineers
look at what new technologies will be available and estimate the development
and production costs of each design. Marketing personnel use econometric
models to determine the likely market for planes and talk to the airlines to assess
their future needs and get their reactions to proposed designs.

By the end of this phase, the development team creates a definition of
what technologies to use, the size of plane, description of the major components,
etc., and produces a document indicating the various requirements that the
design must meet (e.g., statutory requirements, airworthiness requirements, the
ability to operate under particular conditions, such as altitude, temperature,
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length of runway) and other goals the design should attempt to achieve (e.g.,
maximum takeoff weight).

2.1.2  Cost definition

The new plane moves into the next phase when the project team gets the
go ahead from the company to form a new aircraft program and begins the shift
from research to the development of an actual plane. In this phase, the designers
settle on one particular configuration and begin setting the schedule for
designing and producing the first plane.

The engineers begin the detailed design and development of the plane.
The structures group does a preliminary layout of some portion of the aircraft;
then the various systems groups (such as hydraulics, engines or avionics) decide
where they want to put their systems.

Several interesting techniques are used to coordinate this process.
Systems groups use Coordination Sheets to request changes to the design, e.g., to
request a hole in a structural element to route a pipe.

Mockups are used to support a variety of design decisions. Simple
mockups are used by engineering to allocate space among design groups or to
demonstrate designs ideas to management or customers. More detailed
mockups are used to develop the detailed designs and to act as demonstrators
for customers. Finally, full scale detailed mockups are used by manufacturing to
develop manufacturing information for fabrication and installation of tubing,
wires, insulation blankets, etc.

Where two parts that fit together are designed by different groups, the
groups first develop an Interface Control Drawing that shows what each side of
the interface should look like. These are used, for example, between different
body sections, between the galleys and body, etc.

As the plane is developed the company begins looking for initial orders
for the plane from what are called launch companies. These companies agree to
buy the new plane; in return, they may get a price break or earlier delivery than
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other airlines. At the end of this phase, the company commits to producing the
plane.

22 Overview of production process

In order to provide a context for describing the change process, I will now
briefly describe the production process and indicate where changes can occur.

2.2.1 Customer contracts for a plane

Aircraft are highly customized for each customer; each plane has a unique
configuration. Development of a customer’s configuration starts with the
standard aircraft. Many options need to be specified to define a usable aircraft

- which meets the customer’s requirements.

To accommodate the level of customization needed, the design of the
airplane is conceptually divided into two parts: basic and variable. All
customers get all parts released for the basic airplane, for example, the wings and
most of the body of the plane. The basic parts are capable of accepting a variety
of variable parts, for example, the arrangement of galleys or lavatories, or the
avionics or engines used, which can differ depending on the customer’s
preference.

In parallel with the negotiation on the aircraft configuration, the customer
and Airplanes, Inc. negotiate and price and delivery date. The price charged may
have little connection with how much it actually costs to build the airplane. Non-
standard changes require additional engineering work and so might cost more to
implement or delély the delivery of the plane. Airplanes, Inc. also guarantees the
maximum takeoff weight of the plane and various aspects of its performance.

2.22 Plan is developed

The customer specification is used to develop a basic statement of work,
laying out everything that needs to be done to deliver the plane. Based on this
statement of work, the company develops a plan indicating the steps necessary to
manufacture and deliver the plane.
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After the plan is developed, changes may still be made to the
configuration, except they now require changes both to the design and the plan.
Changes are made both on customer request and for on-going product
improvements.

2.23 Plan is executed
To actually build the aircraft, each group carries out their parts of the plan.

Engineering release. Engineers work according to the engineering schedule
which indicates what engineering data is needed and the date by which it must
be released.

Engineering data includes the drawings of each part and assembly in the
aircraft, material lists indicating what raw materials and standard parts will be
needed so they can be ordered in advance, parts lists, tooling information,
installation drawings and test data. The engineers must also consider changes
necessary to the mockups as well as production planes. Engineering may also
release Production Memos telling manufacturing to stop making parts that will
be cancelled by a new release.

If the customer has taken all standard options, then the engineer process is
straightforward, since the engineer can simply indicate that the existing
engineering data should be used for the customer’s plane.

For a new design, the engineer first prepares layouts showing general
arrangement of parts and has the layout approved. A drafter then prepares the
detailed drawings of the parts and the engineer signs off that the designs are
correct. New drawings may be reviewed to ensure they meet interfaces.

When a piece of work is complete, the project engineer sends the data and
a drawing data sheet to Engineering Data Control. The data sheet lists all
engineering releases necessary to accomplish each piece of work. This list is used
-+ by the downstream groups as a check-list to ensure they take all changes in to
account. For a particular change, the engineer may request that advanced copies
of a new drawing be sent to particular organizations.
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Engineering Data Control checks the data to ensure that it meets the
appropriate drafting standards and then marks the items in the schedule as done.
Drawings are copied and distributed to the downstream groups. Parts list
information is added to a computer system and used to create a Bill of Materials
for each plane.

Configuration review. If an aircraft is the first of a model to be delivered to
a customer, then Customer Engineering and Project Engineering review the
drawings to ensure that the plane being designed meets the customer
requirements (C22, p. 3-4). '

Manufacturing. The final assembly of the plane is also done according to

plan. The plan starts with the manufacture or procurement of unit parts. Parts

~can take as long as several years from the time they are ordered to when they are
available. The individual parts are then assembled into subassemblies and
subassemblies into assemblies. As the plane moves down the assembly line in
final assembly, it passes through a number of stations, staying at each station for
about a day (depending on the model). At each station, a certain set of
assemblies are installed and tested.

In the plant, each worker has a band, which lists a particular sequence of
tasks they need to do. When the worker finishes a task, they cross off what
they’ve done. A new set of instructions are issued for each plane that passes
through the station. For each task listed there’s a sheet called an O&IR
(Operation and Inspection Record) describing which parts are necessary and then
all the steps that have to be done. It used to be that the factory worked off of the
drawings for each plane. Now they work off O&IRs. After doing the same job
for a while, they might not have to read the O&IR each time.

The parts listed are either standard small parts, like bolts, etc., which are
pulled from bins scattered around the plant floor or parts which are picked by
stores and put in a special box for that task. When a worker starts a job, he gets
- the bin of necessary parts. When he finishes the task, he stamps it done and puts
a sheet out for the inspector. The inspector checks that it was done correctly and
then stamps it complete as well.
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If the inspector findsa problem, then he or she puts a rejection tag on the
work describing the problem. A special group of engineers, called liaison
engineers, work in the plant to resolve these problems. Most often the problem is
due to a manufacturing error. In these case, the part can be reworked or, if the
problem is inconsequential, accepted as is. Some of the time, the problem is due
to an engineering error, in which case the liaison engineer can change the
drawing or refer it back to the project engineer. These design changes are made
without being committed by the change board, essentially because plan is not
modified.

There are also a number of “greenlines,” which are descriptions of work
needed to resolve problems noted on rejection tags. These are not part of the
standard O&IR since they are not part of the released plane, but some do appear
on the employees’ bands. (Some rejection tags remain for hundreds of airplanes;
one had been in the factory for 2 years. That was a case where a subdivision had
been building the parts incorrectly and the assembly plant was fixing them, and
the subdivision had not been able to correct the process.)

2.24 Plane is delivered

Eventually the plane is finished. After testing, it is delivered to the
customer. Even after plane is completed, changes can be made. Changes may be
made to already delivered plane to incorporate changes which the customer
requests or important changes which to fix problems that limit the capabilities of
the aircraft or to meet new regulatory requirement.

3  Thechange process

Now that we have seen the initial design process, we can discuss how
changes fit into it. More so than for other products, it is difficult to separate the
change process from the production processes. In some sense, Airplanes, Inc.
sells change management.
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3.1 Dimensions of changes

Changes differ along (at least) two dimensions: when the change is made
and who initiates it.

When change is made. Some change are made as part of the design for a
particular customer’s plane while others are made during production or even
after the plane has been delivered. In this chapter, I will not discuss changes

‘made after delivery, although many of the processes discussed are also applied
to these changes.

Originator of change. Changes may be initiated by both the customer and
Airplanes, Inc.. Customer requested changes are typically paid for by the
customer; Airplanes, Inc. initiated changes are paid for by the company and are
typically made to improve the design or make the plane cheaper or easier to
build.

3.2  Goals of the change process

Design changes are necessary to meet customer demands for changes and
to improve the design or manufacturability of the plane. However, the change
control process must ensure that the company retains control of the configuration
(i.e., knows exactly what design and components were used for every part on
every plane built) and to control costs, by balancing the cost of the changes
against their benefits.

3.3  Aninformal description of the change process

There are many similarities in change processes for different kinds of
changes. A primary difference is when the change is made.

3.3.1 Contract negotiation

Many changes are made as a part of the initial contracting process. A
potential customer negotiates with Airplanes, Inc. to purchase planes. These
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negotiations include the cost of the plane, delivery date, performance guarantees
and the details of the airplanes’ configuration.

Negotiations about the configuration start with the basic specification for
the plane. The customer submits change requests for everything beyond the
standard aircraft, e.g., to choose various options or to request particular changes.

Standard options are changes that already engineered and priced and the
customer simply decides whether or not to take them, e.g., a redundant warning
system or additional piece of avionics (Newhouse, 1983). In some cases, there
may be no default option and the customer must make a choice, e.g., which
manufacturer’s engines to use or the exact arrangement of the passenger
compartment.

Novel change requests must be evaluated before company agrees to offer
them and the price, effect on performance, etc. negotiated with the customer.
Often these are unique options developed for a particular customer. For
example, one airline has its own standard toilet drain connection and requires it
on planes it buys. Sometimes a customer-initiated change will be adopted as a
standard option and offered to all customers.

- In addition, the airlines can choose to not have certain Airplanes, Inc.
initiated changes made on their planes. (One reason for not taking a change is to
reduce the amount of variation between airplanes in a customer’s fleet.) Changes
the customer decides not to take must be backed out using a Change Request,
since the changes have become part of the basic release.

Customer change requests are handled in a two phase process:
(1) determine if the change can be offered and negotiate the effect on schedule,
price, performance, etc. with the customer; (2) if the customer accepts the
proposal, implement the change.

The customer submits a change request to customer engineering
indicating what change they want. Customer Engineering writes a narrative
Change Request Work Statement (CRWS) describing generally what work is
required. This work statement may provide only enough detail to allow
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estimates of the cost and work necessary, such as the major parts to be replaced
or revised, new items to be added or reference to similar changes already made.
In some cases a fully detailed work statement may be generated initially,
indicating exactly what work will be done at a detailed level (C42, p. 3-12). The
customer engineer may check the work statement with the responsible project

group.

The customer engineer then sends an alert message to the affected design
groups asking them to classify the change. Changes are classified into one of
four categories: (1) a specification change, one that changes the language of the
specification but not the plane; (2) a negotiated change, one that changes
something about plane that needs to be negotiated with customer, such as cost,
performance, weight, etc.; (3) a study item, a change that requires more
investigation; or (4) rejected. The project engineers inform the Customer
Engineer by phone of the classification.

The Customer Engineer then distributes copies of the work statements to
other groups for their evaluations. One copy goes to the Program Management
Office (PMO). The PMO chairs a Change Request Review Board, which includes
representatives from planning, materiel, etc. This groups decides whether or not
the company can offer the change in the time available.

Other groups determine what they will have to do to implement the
change. For example, the testing group determines what kind of testing will be
required for the change in consultation with the Designated Engineering
Representatives.

The Engineering Cost and Schedules group estimates the engineering
hours needed, which is used by the Finance Group to estimates the total cost of
making the change. The cost is used by the Pricing group to set the price for the
change.

The Weights group estimates the effect of the change on the weight of the
plane. The entire change package is approved by the Customer Engineering
Management.
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The change package is sent to Contracts, who handle all negotiations with
the customer. Contracts presents the change proposal to the customer, who then
decides whether to take the change or not. Accepted changes are incorporated in
the contract and Customer Engineering records the necessary changes in the
Customer Detail Specification.

3.3.2 Initial planning

At some point, the customer signs the contract to purchase the planes and
is given a particular line position. The plane in that position will be built to meet
the customer’s configuration.

When the contract is signed, the Contracts group tells the Program
Management Office, which issues a Program Directive telling everyone to do
what is necessary to deliver the planes. Engineering Business Management then
issues a Program Implementation Memo (PIM) to authorize the various
engineering groups to release the necessary drawings for the plane. Customer
Engineer distributes the Configuration Project Memo to all engineering groups
indicating the exact configuration of the plane.

Engineering Business Management sets a preliminary work statement
based on the past plans and the changes requested and sends them to the project
engineers along with a deadline for the Change Request Work Statements
(CRWS). The project engineers then reviews the configuration memo and
develop a detailed work statement indicating what they need to do.

Engineering Work Statement

‘Given the customer configuration, the project engineers develop an
Engineering Work Statement showing in detail what engineering needs to be
done for the new customer and the dates the various pieces of engineering data
will be available.

Based on the preliminary work statement, manufacturing engineering
develops a Commitment Development Schedule (CDS) and a Manufacturing
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Work Statement (MWS). The CDS is a plan showing the steps necessary to build
the plane and the order of the steps.

Tooling develops the tooling design and fabrication flow times and other
groups determine the necessary times for making and buying parts. Industrial
Engineering takes flow times for various stages and develops demand dates, that -
is, the dates by which they need to receive the engineering drawings. The
various groups then negotiate any discrepancies between the dates to arrive at a
final schedule.

Engineering Administration publishes the schedule and enters the
engineering release dates in the Engineering Scheduled Work Report System
(ESWR).

3.3.3 Changes after the plan is complete

Changes are also made after the contract has been signed but before the
plans are built and delivered. If the planning has not be completed (e.g., for an
aircraft that has been ordered but for which the delivery date is well in the
future) these changes can be handled as above. If the plan has already been
made, then the change requires replanning.

Customer requested changes

After contract is signed, the customer can still request changes to the
configuration. For example, some of the requested changes may not have been
resolved by the time the contract was signed. However, any additional cost of
the change must be negotiated. These change requests are also handled in two
stages.

As before, the customer submiits a change request to the Customer
Engineer assigned to that Customer. The Customer Engineer prepares a
narrative work statement indicating what changes are necessary in consultation
with the Project Engineers as necessary.

The Engineering Change Control group issues an action memo describing
the change that needs to be made which is sent to the Test Integration and
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Weight groups, to staff engineers, etc. for their inputs. Based on the estimated
work, Finance and Pricing develop a price for the change and the change
document is approved by Customer Engineering Management.

Unlike earlier changes, the change is reviewed for offerability by the
Manufacturing Change Board. The Change Board is chaired by Manufacturing -
and includes representatives of all affected groups. There are different boards
for different airplane models. The meetings I attended were attended by
representatives from the factory, the purchasing department, Manufacturing
Engineering, Industrial Engineering, Quality Control, a subassembly plant,
Engineering Change Control and the Change Board Chairman (a full time job).

The completed change package is then given to Contracts for negotiation
with Customer. If the customer accepts the change, Contracts amends the
contract and Customer Engineering amends the configuration memo.

Engineering Change Control then requests the engineering release dates
from the engineers to complete the Engineering Change Memo and the ECM is
submitted to the change board for commitment to a particular airplane. (The
commitment process is described below.)

On-going design improvements

Many changes are initiated by the Airplanes, Inc. company. Such changes
start with a requirement for a design change going to the prime design group.
For example, whenever an airline has a problem with an plane in service, a
report from the airline is sent to Customer Service Engineering group and
eventually makes its way to the design engineer responsible for the affected part.

The project engineer develops a solution to the problem and prepares an
engineering change memo indicating the reasons for change, change priority,
effectivity and information necessary for commitment by change board. The
engineer also notes which other engineers and downstream groups are affected
by the proposed change. The form is then sent to Engineering Change Control
for processing.
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Changes are assigned one of three priorities (C10, pp. 4.20-21).
Compulsory means the change must be made without regard to program impact.
Such changes include fixes to safety or reliability problems that limit the
operation of aircraft or to meet government regulations or contractual
requirements. Urgent changes are technically desirable and should be
implemented as soon as possible, even if this requires out of sequence work.
Routine changes are desirable but do not justify out-of-sequence work (see
below).

ECC sends the handwrite to the affected groups, possibly adding other
groups who they believe may be affected. These groups prepare work
statements indicating what they need to do to implement the change and return
them to ECC. ECC then issues a tip sheet and sends it to various staff groups,
such as finance, weights, and staff engineers as above. These groups also prepare
their work sheets and return them to ECC.

The change is then presented at a weekly director’s meeting. The
responsible project engineer presents the details of the change to the director of
engineer for the plane. Based on the presentation and the additional data
collected, the engineering manager approves or disapproves the change.

If the change is approved, ECC issues a preliminary change memo and
distributes it to the other groups. The change is then taken up at the Superboard
meeting, where it is discussed. The Superboard is a weekly meeting of directors,
e.g., director of engineering, of manufacturing, etc. and is attended by about 30 or
40 people. This groups hears presentations of all new changes that week along
with a financial analysis saying how much the change costs or saves. I attended
two meetings of the Superboard. One week there were 4 and the other 5 changes
total for two models of aircraft.

According to some sources, the Superboard considers both Airplanes, Inc.
and customer initiated changes, but no customer changes were discussed at the
meetings I attended and it is unclear where in the customer change process this is
supposed to happen.
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The Superboard tells the Change Board how important the change is to
implement. They may do nothing; they may decide to hold the change for an
additional piece of information; or they may decide to kill the change completely.

Implementing the changes

Customer requested and internally initiated changes are implemented in
essentially the same way.

Once the change has been approved, Engineering Change Control ask the
project engineers for an Engineering Release Schedules (ERS) indicating when
the engineering can be done. These and the the detailed Work Statement are sent
to the Manufacturing Change Board for commitment to a particular aircraft.

The change boards meet daily to discuss all open changes. On the two
days I attended, one board had 23 and 24 changes for which commitment was
being developed and 23 and 12 for which the commitment was being
reconsidered. No new changes were presented. Of this number, only a few are
discussed (7 or 8) and fewer still are committed.

Committing a change means identifying a particular aircraft on which to
implement a change and getting each group to commit to the necessary delivery
dates for their pieces of a change. The board develops a modified plan indicating
when all the pieces of the change will be ready and which planes will be affected.
As the plane gets closer to completion, the scale of changes that can be made is
reduced.

Scheduling a change. Generally, Airplanes, Inc. does not wait to make a
change, since there are no model years or other logical break points in the
assembly process. If the change makes sense, then it is implemented as soon as
possible.

However, some changes may be implemented either for all or none of a
- ‘particular customer’s fleet, to avoid producing incompatible planes. For
example, if an engineer decides to change a fitting on a pipe, they may not
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implement the change on specific airplanes to avoid selling an airline two planes
with different fitiings.

A particular change has an effect at a given station on the assembly line.
Ordinarily, changes are committed toa particular plane based on which plane
will be at that station on the day the new parts are ready. These kinds of changes
are called in-sequence, because the work is done in the planned sequence.

Some changes (in particular, customer requested changes) are required for
a particular customer’s plane, in which case the change has to be made to that
plane. In this case, the change may be done out-of-sequence, meaning that parts
that are supposed to be installed in one station may instead be installed further
down the line. As an extreme case, important changes may have to be made to
all planes, incuding planes that were already sold and delivered.

Making out-of-sequence changes is very expensive and is generally
avoided. Doing an installation out-of-sequence might make it harder to install
the parts, since parts installed later might obstruct access. Alternately, it may be
impossible to install some of the later parts until the earlier parts are installed. In
any case, out-of-sequence work makes testing the work difficult or impossible,
disrupts normal work in the later station and requires extra workers.

To schedule a change, the Change Board sends the work statement to the
planners. The planners create a Commitment Development Schedule (CDS)
(C10, p. 4-29) that indicates each event and the order of events that must take
place to accomplish the action. This plan is used as a basis for negotiating when
each group must complete its work.

At any point, a change is held waiting for a particular group to obtain
some information. For example, all changes are initially held for Planning to
develop the CDS. A change may be held while Materiel gets a quote or a lead
time from a supplier, for engineering review, etc. On days I visited, most of the
changes were waiting for additional information; many were in fact past due.

Once the availability dates for each part of the plan are determined, the
change board issues the Change Commitment Record (CCR) (C10, p. 4-30). This
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is a form signed by the representatives of each group saying that they will do the
necessary work. The form also records to which airplanes each part of
Engineering Change Memo is committed.

Engineering Change Control then issues the committed ECM and the
engineering release dates are entered in to ESWR as above. The downstream
groups also implement their parts of the changes. The entire plan is monitored
by a change compliance group that checks that committed events are completed -
on or before due dates.

Recommitment. The plan js made based on the preliminary engineering
change memo which is issued before the drawings are available. Sometimes
when the change is finished, it turns out that the changes are different from
expected. Since the change is scheduled as tightly as possible, any delay in a
single step in the plan may affect the outcome. In this case, the change must be
recommitted. The affected group can submit a recommitment evaluation request
(RER) (C10, p. 4-32, 4-33) which is considered by change board. The board can
change the plan for the new circumstances and recommit the change.

3.34 Changes during production

Changes can be made to the airplane even during the production process.
Some of these changes are in response to customer requests and are processed in
more or less the same way as above, but on a smaller scale, since the time
available to make the change is so short.

Others are minor changes made in the plant. These changes must still be
carefully documented. A major source of these small changes are problems
noticed by personnel in the plant. These problems are usually handled by a
group of Liaison engineers who work in the plant.

Rejection tags

Quality control inspects each part, assembly, installation to look for
disagreements between the drawings and plane or other problems (e.g., two
parts rubbing together, a slight dent in a piece of sheet metal, etc.). These
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problems may also be reported to Quality Control by the customer’s own
inspectors who work in the plant or by the FAA inspectors.

Quality Control writes a Rejection Tag for the part stating what is wrong.
An interviewee who was responsible for Liaison engineering for two plane
models said that there were about 7000 rejection tags in a typical week, with
some weeks having as many as 11000.

These figlires were for planes that had been in production for at least
several years. Rejection tags are used as one measure of how far along the
learning curve a plane has progressed. On the first plane of a model has a large
number of rejection tags as the final problems with the design are worked out.
For each customer introduction, the number of rejection tags again goes up
slightly.

The liaison engineer reads the rejection tag and inspects the parts to
determine what fix is needed, describes the required change on the rejection form
and signs the form. The rejection tag then goes to Manufacturing to be
implemented.

According to one interviewee, 97 to 98% of all rejection tags are due to
manufacturing errors, most commonly misdrilled holes. The Liaison Engineer
may decide to scrap the part and start over, to accept the part as is or rework the
part in some other way. Finding an appropriate disposition for the parts is
especially important if the parts involved are particularly complex or expensive.
If the parts must be reworked, then a rework order is prepared, which eventually
results in greenlines for particular stations. In any event, records are kept to
indicate what was done for each problem; the customer eventually receives
copies of all rejection tags.

Engineering problems

About 2 to 3% of the problems are due to engineering errors. In this case,
the drawings must be changed in order to eliminate the problem on future
airplanes.
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In addition to errors noted on the rejection tags, Liaison engineers handle
requests for changes from several other groups. For example, employee
suggestions are sent to the Liaison enginéers for evaluation and possible
implementation.

Manufacturing can request changes to the design using a form called an
Engineering Liaison Request. Such a request may be used for several reasons,
such as to point out an engineering error, for example, a reference to an incorrect
part number or to request permission to substitute materials or make minor
changes to facilitate tooling or the production process.

Subcontractors may similarly request changes, but all communications
from a subcontractor must be sent by way of the Materiel department. The
Materiel department then forwards the requests to the Liaison engineer for

evaluation.

In all these cases, the liaison engineer assess the requested fix on behalf of
the engineering department. If the change seems inappropriate, the liaison
engineer may reject it. For small changes, liaison engineers can change the
drawings themselves. Liaisons can make changes when purchased or buyer
furnished equipment is not affected, the new parts, materials or processes are
readily available, where airworthiness or FAA is not involved, where purchase
agreements do not require customer approval and when engineering and
manufacturing agree on the change. However, a change must be approved using
the full change process when the fit or function of purchased equipment or
manufactured parts is affected, buyer furnished equipment is affected or new
material or processes are required, or when airworthiness is affected.

The Liaison Engineer may consult with the project engineers if there are
any questions about what to do.

Liaison makes change

To issue a change, the Liaison Engineer has a Drafter prepare an
‘Advanced Drawing Change Notice (ADCN) that changes the drawing. An -
ADCN is a single sheet of paper that makes some small change. It is added to
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the front of the drawing instead of changing the drawing itself. ADCNs are
incorporated when the drawing needs to be changed, i.e., when a bigger change
is made. The ADCN is then sent to Engineering Data Control which releases it.

Liaison engineering can do new drawings for all of the detailed parts,
about 50% of the assembly problems and only about 33% of the problems in final
assembly because of increased complexity of problems.

The change is reviewed by Manufacturing Engineering Representative
prior to release. The Manufacturing Engineer Representative considers the
schedule and availability of resources and determines the change incorporation
point. The representative prepares the Liaison Change Commitment Record that
indicates when the engineering, replanning, etc. will be ready and which airplane
~ the change will affect.

Some changes do not have to committed to a particular plane; these are
changes do not change the parts but perhaps fix errors in release, such as
referring to an incorrect part number.

Some do not require commitment on the drawings but are committed to a
particular plane by manufacturing, using a Liaison Change Commitment Record.
This is the case when the parts made according to the rejection tag are
satisfactory but the parts that have not yet been installed or assembled need to be
reworked.

Other changes require commitment to a particular airplane on the
drawings. This is the case when the parts are changed in a way that must be
recorded and the airplane and parts must comply with the change.

Miscellaneous changes group

H the change is not one that the liaison can make, then the liaison forwards
the problem to the project using a Liaison Design Action Request form (LDAR).
These change are forwarded to a Miscellaneous Changes Group which schedule
them in the Engineering work schedule.
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The miscellaneous problems group also get requests for change from
several other groups. For example, other drawing processing or material
ordering groups may send an Engineering Problem Items form to notify the
engineers of parts listing errors or problems, e.g., failure to list a part on the
drawings in the parts lists.

Project engineer

The engineer works on the change as required by the engineering work
schedule. The project engineer may also decide that the change is significant
enough that it should be made as a controlled change, as described above.

3.4  Perceived problems with the change process

As usual, one perception is that there are too many changes being made.
A second concern is that various groups, in an effort to meet delivery deadlines,
agree to schedules for changes that they can not meet, thus further disrupting the
process.

The high volume of work is a problem throughout the aerospace industry
and may be leading to quality control problems, such as those reported by
(Fitzgerald, 1989).

4 Models of the change process

The information-flow and intentional models are incdluded as appendices
to this chapter. The full model has 25 types of actors, described in Table 6.1.
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Table 6.1. Actors types for the Airplanes, Inc. model.

Type of actor

Function in change management process

e e ————— o ]

Change review board  determine if proposed change can be offered in time allotted

Contracts official channel for communication with customers

Customer decide features are necessary
evaluate and accept or reject change proposals

Customer Engineer determine work necessary to implement requested change

Customer Engineering approve proposed changes

Manager

Designated ‘check that proposed designs are technically acceptable

Engineering approve test plans

Representatives

Division Finance given statement of work and engineering hours, calculate cost to make
a change

Drafter given designs, prepare detailed drawings

Employee Suggestion  forward suggestions from employees to liaison engineer for evaluation

Unit

Engineering Business  add events to Engineering Scheduled Work Report

Management negotiate engineering release dates with Manufacturing Engineering

Engineering Change  given statement of work, cost of change and effect on weight, prepare

Control change memo

represent engineering for change control



Engineering costand  given engineering statement of work and test plan, determine cost of
schedules engineering hours
Engineering Data check that drawings meet standards and forward to downstream
Control groups
Engineering Manager  approve layouts and proposed changes
Liaison Engineer given a problem, determine scope of change necessary
make minor changes to drawings
Manufacturing Change decide if a change proposed after the contract has been signed can be
Board offered in the time allotted
given dates, commit proposed change to particular airplane
Manufacturing identify problems with drawings
Engineering given workstatement, determine dates when engineering drawings are
needed
schedule implementation of small changes
Miscellaneous Changes add work to Engineering Scheduled Work Report
Group
Planning given a workstatement, prepare a plan, showing necessary steps and
precedence relationships
Pricing given the cost of a change, determine what price to charge
Project Engineer determine that a change is necessary
given change, prepare detailed description of work necessary
given description of work, prepare release schedules
given configuration and schedule for work, prepare designs and other
engineering data
Quality Control check that drawings and parts, assemblies or installations match
Subcontractor identify problems with drawings
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Super Board approve proposd changes

Weights determine effect of a change to weight of airplane
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6-1

INFORMATION-FLOW MODEL
FOR AIRPLANES, INC.
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6-2

INTENTIONAL MODEL FOR
AIRPLANES, INC.

Sorts

change

change-proposal
change-request—-document

class

crws (change request work statement)
drawing

engineer isa person

layout

manager isa person

person

test-plan

Functions

change (CRWS)

change (Drawing)

change (Layout)

class (Change)

cost (CRWS)
engineering-hours (CRWS)
manager (Person)

price (CRWS)

test-plan (CRWS)
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weight (CRWS)

Relations

accepted-by (person, change-proposal)
approved-by (person, change-propocsal)
approved-by (person, drawing)
approved-by (person, layout)

includes-features (airplane, change)

Individual models

Customer

Jairplane, Change: want (customer, have (customer,
Airplane)) A includes-feature (Airplane, Change)

know (Ccustomer, can(customer-engineer, develop-change-
proposal (customer-engineer, Change)))

can (customer, talk-to(customer, customer-engineer))

can (customer, accept-change-proposal (customer, Change-
proposal))

know(customer, can(contracts, implement-change-

proposal (contracts, Change-proposal))

develop-change-proposal (Performer, Change)
Add: JChange-proposal: have (Performer, Change-proposal)
A change (Change-proposal) = Change

accept-change-proposal (Performer, Change-proposal)
Add: accepted-by (Performer, Change-proposal)

implement-change-proposal (Performer, Change-proposal)

Pre: accepted-by (customer, Change-proposal)

-Add: HJAirplane: have(Performer, Airplane) A includes-
features (Airplane, change (Change-proposal))
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Customer Engineer (ce)

know(ce, can(project-engineer, classify-change (project-
engineer, Change)))

can{ce, lookup-crws(ce, Change))

can{ce, develop-crws{ce, Change))

know(ce, can(customer-engineering-manager, approve-
change-request-document (customer—-engineering-manager,
change-request—-document) ) )

can{contracts, offer-change (contracts, customer, CRWS))

know(ce, can(engineering-change-control, prepare-change-
document (engineering-change-control, Change)))

know(ce, can(testing, create-test-plan(testing, CRWS)))

know(ce, can(weights, determine-weight (weights, CRWS)})

classify-change (Performer, Change)
Add: know(Performer, class{(Change))

lookup-crws (Performer, Change)

Pre: class(Change) = “Standard Option”
Add: 3ICRWS: have(Performer, CRWS) A change (CRWS) =
Change

develop-crws (Performer, Change)
Add: JCRWS: have (Performer, CRWS) A change (CRWS) =
Change

approve-crws (Performer, CRWS)
Add: approved-by(Performer, CRWS)

prepare-change-request-document (Performer, CRWS)

Pre: know{(Performer, weight (CRWS)) A know(Performer,
test-plan (CRWS))

Add: JChange-request-document: know(Performer, Change-
request-document) A change (Change-request-document)
= change (CRWS)
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approve-change-request-document (Performer, Change-
request-document)
Add: approved-by(Performer, Change-request-document)

offer~change (Performer, Customer, Change-request-
document)
Pre: appoved-by(customer-engineering-manager, Change-
request-document)
Add: know(customer, Change-request-document)

create-test-plan(Performer, CRWS)
Add: know(Performer, test-plan (CRWS))

Test integration

can(testing, create-test-plan(testing, CRWS))

know (testing, can(der, approve-test-plan(der, Test-
plan)))

know({testing, can(engineering-cost-and-schedules,

determine-cost (engineering-cost-and-schedules, CRWS)))

create-test-plan(Performer, CRWS)
Add: know (Performer, test-plan (CRWS))

approve-test-plan (Performer, Test-plan)
Add: approved-by(Performer, Test-plan)

determine-cost (Performer, CRWS)

Pre: know(Performer, test-plan(CRWS)) A know(Performer,
CRWS)

Add: know(Performer, cost (CRWS))

Weights
can(weights, determine-weight (weights, CRWS))

determine—-weight (Performer, CRWS)
Add: know(Performer, weight (CRWS))
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Designated Engineering Representatives (der)

can (der, approve-tests(der, Tests))

approve-tests (Performer, Tests)
Add: approved-by (Performer, Tests)

Engineering Cost and Schedules {ecs)

can (ecs, determine-determine-engineering-hours (ecs,
CRWS) )
can (finance, determine-cost(finance, CRWS))

determine-engineering-hours (Performer, CRWS)

Pre: know(Performer, test-plan(CRWS)) A know(Performer,
CRWS)

Add: know(Performer, engineering-hours (CRWS))

determine-cost (Performer, CRWS)

Pre: know(Performer, test-plan(CRWS)) A know(Performer,
CRWS)

Add: know{Performer, cost (CRWS))

Division Finance
can(finance, determine-cost (finance, CRWS))

determine-cost (Performer, CRWS)

Pre: know(Performer, engineering-hours(CRWS)) A
know (Performer, change (CRWS))

Add: know (Performer, cost (CRWS))

Pricing

can (pricing, determine-price(pricing, CRWS))
can (pricing, talk-to(pricing, contracts))
know(pricing, can{contracts, propose-change (contracts,

customer, Change-proposal)))
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determine-price (Performer, CRWS)
Pre: know{Performer, cost (CRWS))
Add: know{(Performer, price (CRWS))

propose-change (Performer, Customer, Change-proposal)
Pre: know(Performer, price(Change-proposal))
Add: know({Customer, Change-proposal)

Contracts

can (contracts, talk-to(contracts, Customer))

change (Change) = know(customer, want (customer, Change))
v ~know(customer, want (customer, Change))

know (contracts, can(customer-engineer, implement-change-

proposal (customer-engineer, Change-proposal))

implement-change-proposal (Performer, Change-proposal)
Pre: accepted-by{customer, Change-proposal)
Add:

Customer Engineering Manager (cem)

can(cem, approve-change-proposal (cem, Change-propocsal)

approve-change-proposal (Performer, Change-proposal)
Add: approved-by(Performer, Change-proposal)

Project Engineer

can(project-engineer, classify-change (project-engineer,
Change))

know(project-engineer, can(drafter, prepare-
drawing(drafter, Layout)))

know (project-engineer, can(engineering~data-control,
release-drawing (engineering~data-control, Drawing)))

know (project-engineer, plan(implement-change, release-

drawing))
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know (project-engineer, can(engineering-manager, approve-
layout (engineering-manager, Layout)))
know (project-engineer, can(engineering-manager, approve-

drawing (engineering-manager, ﬁrawing)))

classify-change (Performer, Change)
Add: know(Performer, class(Change))

prepare-drawing (Performer, Layout)
Add: dDrawing: have (Performer, Drawing) A
change (Drawing) = change (Layout)

release-drawing (Performer, Drawing)
Pre: approved-by (manager (Performer), Drawing)

approve-layout (Performer, Layout)
Add: approved-by (Performer, Layout)

approve-drawing (Performer, Drawing)
Add: approved-by(Performer, Drawing)

Engineering Manager (em)

can (em, approve-layout (em, Layout))

can (em, approve-drawing{em, Drawing))

approve-layout (Performer, Layout)
Add: approved-by (Performer, Layout)

approve-drawings (Performer, Drawing)
Add: approved-by(Performer, Drawing)

Drafter

can (drafter, prepare-drawing(drafter, Layout))

prepare-~drawing (Performer, Layout)
Add: dDrawing: have (Performer, Drawing) A
change (Drawing) = change (Layout)
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Manufacturing Change Board (mcb)

can (mcb, decide-offerability(mcb, CRWS))
know (mcb, offerable (CRWS) = can(contracts, offer-
change (contracts, customer, change (CRWS))

decide-offerability(Performer, CRWS)

Pre: dChange-action-memo: have (mcb, Change-action-memo)
A change (Change-action-memo) = change (CRWS)

Add: know (mcb, offerable (CRWS)) v know (mcb,
~offerable (CRWS))

Engineering Change Control (ecc)

can (ecc, prepare-change-document (ecc, Change)))

prepare-change-request-document (Performer, CRWS)

Pre: know(Performer, weight (CRWS)) A know(Performer,
test-plan (CRWS))

Add: dChange-request-document: know (Performer, Change-
request-document) A change (Change-request-~document)
= ¢hange (CRWS)

Engineering Data Control {edc)

know (edc,
equal (implement-change (edc, Change),
concurrent (inform(edc, tooling, Change),
inform(edc, materiel, Change),
inform(edc, planning, Change),

inform({edc, project-engineer, Change))))
Super Board (sb)

can (sb, approve~change-proposal (sb, Change-proposal))

approve-change-proposal {(Performer, Change-proposal)
‘Add: approved-by (Performer, Change-proposal)
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RECIPES FOR MULTI-AGENT ACTION

Although you will perform with different ingredients for different
dishes, the same general processes are repeated over and over
again. As you enlarge your reperioire, you will find that the
seemingly endless babble of recipes begins to fall rather neatly
into groups of theme and variations...

—Child, Bertholie and Beck, Mastering the Art of French Cooking

In the cases, I found that the people I studied did many things. I want to
develop a concise way to say which things they did are the same, to describe
what problems arise that require coordination and to identify where
organizations have taken alternative approaches to similar problems. In short, I
want to move from a simple description of the specific sites to a typology of the
different kinds of coordination methods used.

1 A typology of coordination problems and methods

In my view, coordination problems are caused by interdependencies
between various elements of a situation which constrain how particular tasks are
performed. These problems require the actors to perform coordination methods
to overcome the constraints. In this section, I will propose a typology of these
coordination problems, based on the kinds of interdependencies that can arise.

To generate the typology, I group the four elements of my models—goals,
actions, actors and objects—into two categories: (1) the objects that make up the
world and in particular, the resources needed to perform actions (including the
actors themselves); and (2) tasks, such as achieving a goal or performing an
action. In any sifuation there may be multiple instances of each of these
elements, possibly interdependent.
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I simplify the typology by considering interdependencies only between
pairs of items and focusing on the differences due to different kinds of items.
Obviously, it is possible to describe situations where a group of items interact
while no pair do. (For example, consider the following three tasks in a blocks
world: place block A on B, block B on C and block C on A. Any pair of these
tasks can be achieved, although the combination of the three cannot.) However, I
argue that the kinds of coordination problems that arise in the general case are
the same as those that develop between pairs (although the solutions to the
general problem may be more difficult).

There are three possible pairs of these two elements (tasks and objects)
taken two at a time ignoring order and therefore three kinds of
interdependencies I consider: (1) task and task, (2) task and object and (3) object
and object. Ifurther divide task-task relationships into (1a) subtask relationships
and (1b) overlaps (basically relationships up-and-down versus across the task

‘hierarchy) because of differences in the kinds of coordination methods used.
This typology is shown in Table 7.1.

Each kind of interdependencies gives rise to a set of coordination
problems; there are multiple coordination methods that can be used to address
each kind of problem. The typology groups coordination methods together by
the problem they address.

Table 7.1. Typology of dependencies between tasks and objects.

l Tasks Objects |
Tasks la Subtask 2 Taskor resource
1b Task overlaps assignment
Objects 3 Object
interdependencies
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Of course, this grouping is very coarse. For example, there are important
differences between different kinds of objects and different ways tasks can be
interdependent. I therefore break up some of the cells into finer distinctions;
these distinctions are discussed as I present the typology in more detail.

Table 7.2 presents a summary of the coordination problems identified and
the section of this chapter in which they are discussed; Table 7.3 summarizes all

Table 7.2. Typology of coordination needs and corresponding chapter section.

Coordination need Section
Type 1a: task-subtask interdependencies 3
task decomposition ‘ 31
goal induction 32
Type 1b: other task interdependencies 4
eliminate or reduce interdependency 4.2
two tasks create same object 4.3
tasks are duplicates 431
tasks specify different aspects of the object 43.2
object created by one task is used by another 44
order tasks

transfer object from one task to another

two tasks use the same object , 45
uses of object must be scheduled
uses of object conflict
Type 2: task-object interdependencies 5
identifying what objects are needed by the task 5.1
identifying what objects are available 5.2
choosing particular set of objects 5.3
in the case of an actor, getting the actor to work on the task 54

Type 3: object interdependencies
trace effects of tasks 6.1
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recipes introduced in this chapter.

In the remainder of this section I will briefly describe the two elements,
tasks and objects, and explain why I grouped the elements of my models in this
way.

Table 7.3. Coordination recipes.

Coordination method Recipe

Type la: task-subtask interdependencies

Task decomposition can (actor, plan{actor, Goal))

Integration can{actor, integrate{actor, Subtasks))

Supertask induction can(actor, induce-supergcal (actor,
Subtasks))

Type 1b: other task interdependencies

Create-create
Mergingduplicate know (actor, taskl) A know {actor, taskz)
tasks
can{actor, check-for-duplicate-
tasks (actor, Taskl, Taskz)
can{actor, merge-tasks(actor, Taskl,
k
Tas 2))
Reuﬁngexﬁﬁng know({actor, subtaskl) A know (actor,
results subtaskz) .

can (actor, check-for-duplicate-

task{actor, Taskl, Taskz)

VTask € known-tasks: have (actor,

result (Task))
or

can(actor, lookup-result (actor, Task))
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Create-use

User requests object request (actorl . actor2 r

informref (actorz, actor,, AX:
Z=result (task)))

Creator knows user know (creator,

needs object next-task-in-plan(plan, current-

task)) A know(creator,
task-assignment (next-task-in-

plan(plan, current-task), user)

Third party acts as some combination of above methods

clearinghouse

User searches for object can (user, search-for-result (user, Task))

Use-use

Type 2: task-object interdependencies

Identifying task can(assigner, calculate-task-
requirements requirements (assigner, Task))
Identifying resources

Single resource know(assigner, can{performer, task-

requirements (performer, task)))

Calculate appropriate  can(assigner, calculate-which-

resource performer (assigner, Task))

Askinformer to name know (assigner, 3Actor:

performer know{informer, can({Actor, task)))

request {assigner, informer,
informref (informer, assigner, AX:

can({X, task)))
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Market-like assignment know (assigner, 3X € actors: can(X,task))

*+ VX € actors:

request (assigner, X,

informref (X, assigner, AY: Y =

ability (X, task})

Bulletin board know(assigner, J¥ € Actors: can(X,task))

5. V¥ € Actors: request (assigner, X,

task)
Choosing particular can(assigner, pick-best-
resources resource (assigner, Resources))
Acquiring actor’s effort request (assigner, performer, task)
Assigning resources can (assigner, check-if-busy{assigner,

Resource))

Assigning task assignment know (assigner, JActor know(informer,

task can (Actor, task)})

request {(assigner, informer, task)

Type 3: object interdependencies

Checking for object can(actor, check-model-for-
interdependencies interdependencies (actor, Model,

Component))

Evaluating know{actor, plausible (want (actor,

interdependencies change (component 1)) A physically-

interdependent (component1 r

componentz) ; want {actor,

change (component,))) )

284



1.1  Objects

I consider everything used or affected by actions together in this category.
Objects that are not somehow used or affected by an action are not considered; if
they are not involved in the actions of some actor, then they are irrelevant to the
analysis of the behaviour of that actor. For example, in the case of the car
company, the objects include tools, raw materials, parts, partially completed
assemblies, information such as designs or process instructions and the efforts of
the employees of the company.

Note that actors are viewed simply as a particularly important kind of
resource. Igrouped actors and other kinds of resources together in this way
because I wanted to explicitly consider the question of matching actors and tasks
and the issues that arise in assigning tasks to actors parallel those involved in
assigning resources to tasks.

Of course, there are other important differences between objects. I
consider in particular two dimensions: shareablity and reusability, as shown in
Table 7.4. The first dimension describes how many actions can use an object at a
single time. Shareable objects, such as information, can be used by multiple

-actions simultaneously. Most other objects, such as effort, raw materials or tools,
are non-shareable, since only a single action can be using them at one time.
Formally, if we have a predicate,

use (object, action, situation),

indicating that the object is used by the action in the given situation, then

Table 74. Examples of objects classified by shareability and reusability.

|| Shareable Non-shareable
Reusable " Information Tools

Consumable | Raw materials
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use (object, actionl, situationl) A
use (object, actionz, situationz) A

aCthl'll # act:.onz

is valid for all situat:i.on:L and situat ion2 for shareable objects, while for the

nonshareable objects,

use (object, actionl, situationl) A
use {(object, actionz, situationz) A
action, =# action2 =

1
~overlap(situationl, situationz).

The second dimension, consumable/reusable, pertains to use at different
points in time. Consumable objects, such as raw materials, can only be used
once; use by one action prevents any other action from using that object at any
other time. Reusable objects—things like tools or information—can be used and
reused at different times. It appears that all shareable objects are also reusable,
that is, that there seem {o be no objects that can be used by multiple actions
simultaneously but are consumed in the process. Formally,

use {resource, actionl, situation =

1)
~3Action2, Situationz:

use (resource, Actionz, Situationz)

1.2 Tasks

This category includes both achieving goals and performing actions.
Goals and actions are usually considered as quite distinct. Both describe an
outcome state, but actions have several other characteristics. First, actions
usually have preconditions, that is, an action may only be applicable in a
particular state of the world. For example, an action may require as a
precondition that an object be present or that it have a particular attribute. In the
cases I studied, knowledge is an important kind of precondition since an actor
may need to have some knowledge before it can execute an action. Second,
actions may have unintended side-effects which are not part of the goal.
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However, I believe that for understanding the coordination issues that
-arise in the organizations I studied it makes more sense to consider actions and
goals together. I call both of them tasks; a task can be achieving some goal or to
performing some action. This view makes clear the parallels between
decomposing goals into subgoals and decomposing them into actions. By
treating higher-level goals as actions to be accomplished by the subunit, this view
allows us to treat assignment of goals to a subunit in the same way that we
consider assigning actions to individuals. Both goals and actions are
descriptions of the task to be undertaken by the particular subunit to which it is
assigned.

2 Recipes

As defined in Chapter 1, a recipe is “what someone knows when they
know how to do something.” Irepresent “what someone knows” in an
augmented first-order logic, as discussed in Chapter 2. Therefore, a recipe is a
set of formulas that describes what an actor needs to know or descriptions of
actions that it must be able to perform in order to perform a coordination
method. Some of the knowledge can be described generically; in other cases, it is
domain-specific and can only be described in general terms.

Note that this definition is not the same as the kitchen definition of a
recipe as a sequence of steps fo be taken. Rather, it is more analogous to the
knowledge an expert chief would have to allow him or her to generate the
sequence of steps.

In the following sections, I describe the kinds of coordination problems
that arise in the categories developed above. For each of the coordination needs,
I present the recipe for various coordination methods that can be used to address
it. I first give examples of the coordination method drawn from the case studies.
These examples are set off by being printed in italics. I then provide a general
formalization of the recipe. These recipes are distinguished by being printed in a
distinctive font (courier) and set in a box.
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When an actor uses a recipe to carry out a coordination method, it usually
results in some communication activity. I periodically illustrate the use of the
recipes by showing how actor deduces what to do and the set of messages that it
sends as a result.

2.1  Sources of recipes

The primary source for the recipes is the case studies discussed in the
preceding three chapters. In this study, I focus on the kinds of coordination
problems that arose in engineering organizations. Other kinds of organizations
may have somewhat different kinds of problems, although there is likely to be
substantial overlap. Ibelieve that these other as yet unstudied coordination tasks
should fit into the typology presented here, in as much as they can be analyzed
along the same dimensions, but (perhaps) with different values for dimensions
than any of the tasks I studied.

Furthermore, because I studied the organizations at one point in time, I
mostly saw short-term coordination processes and not more long-term ones. For
example, decisions about how to decompose a goal and design individual actions
are taken only rarely, when the organization is designed.

In some cases, it is clear that there are other possible ways of performing
the coordination tasks and I have attempted to discuss these ways. One useful
method for generating these alternatives is to consider possible distributions of
the coordination knowledge identified. Another variation is between knowing
something and being able to calculate it. In some cases the actors may perform a
particular set of actions because they are following a script. For example, an
action might be coordinated in advance by the creation of a plan which is then
executed by the members of the organization. In these cases, the analysis of the
necessary knowledge is still applicable, but the knowledge in question may be
held by the actor who creates the plan.
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3 Category 1a: Dependencies between tasks and subtasks

The first category of coordination methods are those that manage the
interdependencies between tasks and subtasks. Tasks and subtasks interact
because performing the subtasks is necessary to perform the tasks.

3.1 Task decomposition

One way to manage this dependency is to decompose the task into
subtasks to be performed by individual actors. This is the basically the planning
process, briefly discussed in Chapter 2. To petform this decomposition, an actor
must know what tasks are to be achieved and know (or be able to generate)
possible subtasks (or primitive actions) and their preconditions and effects.

If the subtasks are known in advance by some actors, those actors can
create a plan for performing the task. The plan may then be distributed to other
actors to be carried out. Otherwise, a more adaptive process is required to
recognize and decompose tasks on the fly. In practice, organizations do some of
both. For example, one actor may create an abstract plan and distributing high-
level subtasks of the plan to other actors to carry out.

In Car Co., the process engineers decompose the design into specific operations the
assembly workers can perform to assemble the cars. The process engineers get the design
of the car from the design engineers. In addition, they know what the workers on the

assembly line can do in the time available, what tools are available or can be built, efc.

In Car Co., the production scheduling group decides where to build cars and even the
order in which they should appear on the assembly line. They know how many of each
car is needed from the marketing department. They also know the constrainis of the

assembly line, such as how many of each model can be manufactured.

In Airplanes, Inc., a planning group determines what steps are required to implement a
change, including design, manufacturing parts, etc. This group knows what steps are
required to implement a change. In addition, they know how long each operation should
take to perform, allowing them to develop a schedule for the plan.
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As discussed in Chapter 2, I assume that actors have a plan operator with
which they can generate a plan to achieve their goals. The recipe for this case is
simply some kind of action that generates a plan:

plan (Performer, Goal)

Preconditions: know(Performer, Actions)
Effects: know (Performer, Plan) A achieves-

goal {(Plan, Goal)

Depending on the situation, more domain-specific knowledge may be used, but
this recipe is all that can be said in general.

3.1.1 Task integration

If multiple subtasks are performed, it may be necessary to integrate their
results. This integration step is frequently viewed as a kind of coordination task.
However, I believe that integration can be viewed simply as another part of
performing the task, that is, the task is decomposed into multiple subtasks, one of
which is to integrate the results.

To do this integration requires knowing the results of the actions. The
integration subtask is thus dependent on the other subtasks, as discussed below.
In addition, the actor must have some domain-dependent knowledge about how
to do the integration.

In Computer Systems Co., the integration group can integrate changes to various
modules info the final system. This group knows how fo recompile and link the different

modules into a working operating system and how to test the resulting system.

Integration may be represented by an operator such as:

integrate (Performer, Tasks, Subtasks)

Preconditions: have (Performer, results (Subtasks))

Adds: have (Performer, results(Tasks))
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The exact axiomatization depends on nature of the results to be integrated. For
- example, if the results are parts to be assembled, then the precondition is to
actually possess the parts; if the results are knowledge, then the actor simply
needs to know the results.

3.2  Supertask induction

An alternative approach to managing the dependency between tasks and
subtasks is to determine what primitive subtasks are possible and choose
supertasks that can be achieved with these actions. To do this induction requires
knowing what primitive subtasks are possible, their preconditions and effects
and being able to generate possible supertasks that could be achieved. It may
also be necessary to have some way to choose between alternative possible
supertasks.

I'represent this induction by a domain specific action, induce-
supertask. This action gives the actor a new goal, one that can be achieved
with the given subtasks.

induce-supertask (Performer, Subtasks)
Adds: want (Performer, Task)} A

can—-achieve (Performer, Task)

I did not see any examples of this in the cases, but I point it out here
because it seems logically consistent with this framework.

4 Category 1b: Dependencies between different tasks

The second category of coordination methods are those that manage the
interdependencies between tasks other than subtask relationships. Obviously,
there are many possible interdependencies between tasks; I therefore divide this
category more finely. Many researchers have tried to categorize the kinds of
interdependencies that arise between pairs of goals or actions; some of these
efforts are summarized at the end of this chapter.
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I believe that it is most productive to view tasks as interacting through

 their effects on a common set of objects in the world. This conception is similar
to Star’s (1989) notion of boundary objects. Star introduces boundary objects as a
channel for actors with different goals and viewpoints to cooperate in solving
heterogeneous problems. In her words, boundary objects are “plastic enough to
adapt to local needs... yet robust enough to maintain a common identity across -
sites” (p. 46). Star describes different kinds of boundary objects she found in her
study of a natural history museum, but she notes that her list was not exhaustive
and suggests looking for other kinds of boundary objects.

To organize this category of coordination problems, I therefore develop a
typology of the ways different tasks interact, by considering the ways they
interact with objects in the world. I propose a simple typology of possible
dependencies between two tasks based on what kind of common object is used,
(shareable/reusable) and how it is used by the two tasks.

One useful distinction Star (1989) does not make explicitly is the fashion in
which tasks use the common objects. I consider only two basic operations a task
can perform on an object: creation and use. An object is used if it appears in the
precondition list of some action; it is created if it appears in the effect list. (For
consumable objects, use is consumption.) For two tasks using a common object,
there are three possible combinations of these two modes of use: create-create,
create-use and use-use.

Table 7.5 shows the dependencies that arise between tasks for these three
combinations of create and use and the three different kinds of objects described
above. Temporal relations obviously mediate many of these dependencies; for
some kinds of objects, a constraint may exists only if the tasks use the objects at
the same time. These interdependencies may not be visible at higher levels of
abstraction of the tasks; they may become apparent only when the goal is
decomposed into a set of specific actions.

292



Table 7.5. Typology of coordination problems by operations and type of common object.

use create-create create-use use-use

type of object

eliminate duplicate order tasks
shareable no conflict

negotiate object transfer object
non-shareable, . order tasks
/ share object schedule use

reusable transfer object
non-shareable/ order tasks

economies of scale conflicting goals
consumable transfer object

Reading across the columns, there are three primary classes of
coordination problems: create-create, create-use and use-use.

Create-create. If an object is created by two tasks, then it may be possible to
merge the two tasks or partially or completely eliminate one of them.
Alternately, the two tasks may specify different aspects of the object, possibly
requiring negotiation to arrive at a consensus.

Create-use. If an object is created by one task and used by another, then
there is a temporal dependency between the two, requiring that the tasks be
performed in the correct order and that the common object be transferred from
one to the other. (This problem is similar to the “producer/consumer” problem
in computer science.) This relationship frequently holds between steps in a
process. For example, in assembling a car, the spot welding operation takes
components as input and creates a body; painting takes body is taken as input
and creates painted body.

Use-use. Hf two tasks both use an object, and the object is shareable, then
there is no conflict. If the object is not shareable but is reusable then the use of
the object must be scheduled. This implies that one task must be chosen to be
performed first and the other task made to wait. If the object is not reusable, then
the two tasks can not both be performed with the available resources. Additional
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resources must be acquired or one of the tasks dropped. (These final two
problems are related to the “mutual exclusion” problem in computer science.)

A single task can perform both kinds of access on a single object; for
example, modification of an object can be modelled as use followed by
recreation. For non-shareable objects, the resulting dependencies are the
combination of the dependencies from the individual operations.

4.1  Avoiding constraints

One approach that may be useful for managing any kind of dependency is
to avoid or eliminate it. Since dependencies, in my view, arise when two tasks
both use some common object, one strategy for eliminating dependencies is to
restrict access to the common object to a single task.

A variant of this strategy is to internalize the need to coordinate in a single
actor, by having one actor perform all actions that access a particular common
object. This strategy does not eliminate the dependency between the tasks nor
the need to manage them, but it does permit the use of much simpler
management techniques as only a single actor is involved. This actor can, for
example, decide which operations to perform, without having to check if these
operations conflict with someone else. This centralization seems to be a common
reason for various kinds of role specialization. Of course, centralizing access
does not completely eliminate the need for coordination between actors because
the objects themselves can be interdependent, as discussed below, but it does
eliminate one class of dependencies.

In all of the sites studied, the effects of potential dependencies between several changes to
a single part are mitigated by having a single engineer make all changes to the part. For
example, in Computer Systems Co., having programmers specialize in a particular
module eliminates the need to manage access to modules, since only a single programmer

can make changes.
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4.2  Conflicting creation of objects

The first category of task interdependencies I will consider are conflicting
creates, that is, the two tasks both create the same object (column 1 of Table 7.5).
There are two subcases to consider. First, an identical object may be created by
the two tasks or alternately, the two tasks may be duplicates. For example, two - -
engineers may try to design the same part. Second, the two tasks may specify
different aspects of an object, thus requiring cooperation between the tasks. For
example, the interface between two modules of an operating system may be
developed and used jointly; the specification of a customer’s airplane is
negotiated between the airplane company and the customer.

4.2.1 Tasks are duplicates

If the two tasks create the same object, then it may be possible to eliminate
one of the tasks, thus reducing the total effort required. For example, having two
engineers both design the same part is usually a waste of effort. Even if the
resulting object is not shareable (e.g., if the task is to make a new part), there may
still be economies of scale that make it cheaper for one actor to do the task twice
than for two actors to do the task once, again suggesting merging the tasks.

To compare the tasks requires first that some actor know both tasks.
Knowing both tasks can be represented by the following piece of a recipe:

know{actor, taskl) A know (actor, taskz).

Second, the actor must be able to tell that the tasks are the same. I assume
that the actor can calculate a predicate same-task thatis true for equal tasks
(that is, tasks that create the same output):

check-for-duplicate-tasks (Performer, Taskl, Task2)

Adds: know (Performer, same-tasks (Taskl,
Taskz)) v know (Performer, ~same-
task(Taskl, Taskz))
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Checking for duplicates before tasks are performed. If the check for the
duplicates is done before either task is performed, then it is possible to merge the
two tasks together and perform only one of them. How the tasks are merged
depends on the context. For example, when decomposing tasks into subtasks, an
actor may simply avoid creating duplicate subtasks. If the tasks have already
been decomposed and assigned to actors, then the group may have to decide
which tasks not to do.

Checking for duplicates after one task has been performed. If the tasks are
performed at different times, the actor performing the later task may be able to
simply reuse the result of the earlier task, if it can find it. To do this, there must
be some way to find the results of earlier tasks, to tell that the current and past
tasks are the same and to use the existing results found.

This cell of the typology is where I classify the coordination method
performed by response center described in the first example in the introduction.

In Computer Systems Co., the response center and marketing engineers check if a
reported problem is already in a database of known problems. If it is, then the solution to
that problem report can be used.

One possibility is that the actor may simply have the result for some set of
tasks. The recipe for this situation looks like this:

VTask € known-tasks: have (actor, result (Task))

Alternately, the actor may have some action it can take to find the
previously found result, such as:

lookup-~result (Performer, Task)
Preconditions: Task € known-tasks

Adds: have (Performer, result {Task))

Presumably this action costs less than the other actions that can be used to find
the result, so this action is tried first.
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4.22 Duplication of tasks for redundancy

It may be that the tasks are duplicated to provide redundancy (Rochlin, et
al., 1987). For example, several sensors might measure the temperature of a
reactor to protect against the failure of any single sensor.

For shareable resources such as information, there must be an additional
task to ensure that the output of the redundant tasks agree. This task might
consist, for example, of each user of the object monitoring all outputs and taking
some recovery action if they disagree. Each such task is thus a user of the
outputs; the associated coordination problems are discussed in section 4.3.

For nonshareable resources, each task independently creates some amount
of the resource, thus protecting against the failure of any single process. In this
case, tasks using the resource may have a choice of which input to use; the
associated coordination problems are discussed in section 5.3.

4.2.3 Tasks create different aspects of the object

The second possibility is that the two tasks have different perspectives on
the objects being created. For example, in a design problem, the interface
between two components may be explicitly negotiated by the actors designing
the components. This process can be modelled as an exchange of proposals until
a mutually acceptable object is found. Negotiating the object requires some
domain specific knowledge about the tradeoffs between various values of the
object’s features and some way to evaluate a particular set of features.

In Computer Systems Co., the interface between two modules may be negotiated by the
engineers developing the two modules.

In Airplanes, Inc., the airplane configuration is used to ensure that the customer and the
company agree on the desired features of the airplane and by all engineers to ensure they
are designing the same aircraft. In this case, the common object is defined by negotiation

between the company’s customer engineers and the customer.
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4.3  Output of one task is input of another

A particularly common case is that the common object between two tasks
is created by one task and used as an input by another. In this case, there is a
temporal dependencies between the tasks. Coordination is necessary to ensure
that the tasks are performed in the correct order and to manage the transfer of
the object from one task to the next. As mentioned above, the output of many
tasks may be the input to an integrating task.

In Car Co. and Airplanes, Inc., designs are created by a design task and used by a parts
manufacturing task. The parts manufacturing task in turn creates parts which are used

by a product assembly task.

In all sites, the individual components of the products are created separately and
assembled into the final product.

To ensure that the tasks are performed in correct order requires that the
actor performing the first task know which actor should get the object next and
the second actor knowing that it should wait for the result of the first.

There are several possible solutions to the first problem. First, the actor
may simply know that the result is to be sent to a particular actor.

In Computer Systems Co., the distribution group knows how to find the customers who
need the latest release of the system. The group must know which other actors are
expecting the result.

This knowledge is probably best represented as part of the plan executed by the
first actor; the final step is an action to tell or give the second actor the result,
such as:

inform(creator, user, result (task))

The plan may include this final step because the user asked the creator to
perform the task and to return the result.
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In Computer System Co., customers call the response center, describe the problem they
want fixed and (implicitly or explicitly) request that they be sent the solufion.

In this case, the creator will have a goal of sending the result to the second actor
as a result of a request such as:

request (user, creator, informref (creator,
user, AX: X = result (task)))

Second, the first actor may know the goal structure and thus what the next
task is and which actor performs it by virtue of a recipe such as:

know{creator,
next-task-in-plan(plan, current-task)) A

know{(creator, task-assignment {(next-task-in-

plan({plan, current-task), user)

In this case, the creator can reason from the knowledge preconditions of the next
task that the user needs the result of the current-task and therefore transfer the
result.

Finally, a third actor may oversee the process, acting as a clearinghouse
for the results.

In Airplanes, Inc., the engineering change conirol group shepherds changes through the
change process, tracking their status and generally ensuring that things are happening.

In Computer Systems Co., a document library centralizes communication of changed
documents. The group knows which other actors are expecting the result of changing a

document.

In this case, the first actor needs to know to send results to the central
actor; the central actor must know which actor needs the result next. The
execution of the applicable recipes results in the following communication:

inform(creator, clearinghouse, result (task))

inform(clearinghouse, user, result (task))
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The second problem, ensuring that the second actor waits for the result of
the action performed by the first actor, can be modelled by assuming that the
result is a precondition for the action of the second. Therefore, the second actor
will not be able to perform the action until it gets the result. To get the result, the
second actor can either wait for the first actor to send it, as described above, or
actively seek it out. |

The seeking out would be represented by an action similar to the lookup-
result action discussed above.

search-for-result (Performer, Task)
Preconditions: Task & known-tasks

Adds: have (Performer, result (Task))

In this case, the first actor need only put the result of the first action somewhere
where the second actor will be able to find it.

4.3.1 Synchronizations

Two tasks may have to happen at the same time; furthermore, they should
either both happen or both not happen. For example, for two movers to lift a
piano requires that both lift their ends at the same time.

In all sites, two changes may need to be implemented together, since each depends on a
change implemented by the other. Such changes indicate the changes on which they
depend; neither change can be implemented separately.

For example, in Car Co., when the supporis for the rear seats were changed to integratea
spacer for the trunk lining, the separate spacers being used should have been eliminated.

One way to model this action is to assume that the output of each task is
an input or precondition of the other. Therefore, the tasks must temporally
precede each other, or alternatively, they must be executed concurrently.

Synchronizing the execution of the tasks is difficult. The actors
performing the tasks must both know that they need to be synchronized. If they
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both know both tasks they can figure this out by reasoning from the
preconditions and effects of the tasks.

If each actor knows the other actor performing the task, they can pick a
time at which to perform the two tasks using some group decision process.

Alternately, a third actor may signal both actors to proceed at the same

time.
4.3.2 The user constrains the creator of the objects

So far we have assumed that one task creates an object which is then
independently used by some second task. It is possible that the task using the
object may constrain how the object is created.

In Computer Systems Co., the user creates and the response centre uses the customer
complaint. The two may negotiate the details of the complaint, for example, by iterating
the process (i.e., the customer files a complaint, the response centre asks for more details,

the customer supplies them, efc.) or in a continuous dialogue.

One way to model this process is to split the process of creating and using
the object into two actions. The resource is first jointly created by the two actors
and then used as input by one of them for a second action.

Alternately, some of the knowledge about the constraints of either task
can be moved from one actor to another. This final case has three interesting
subcases. First, some of the customer’s knowledge can be transferred to the
response centre, for example, by having the response centre recreate the situation
on their own computers. Second, some of the response centre’s knowledge can
be made available to the customer. For example, at the site studied, a computer
system had recently been developed that allowed customers to do their own
searches through the database of known problems. Finally, a third party may
have some of both actors’ knowledge and be able to mediate between them. In
some cases, for example, the customer engineer responsible for the site may
investigate the problem and file a change request.
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4.4  Conflicting use of objects

When two tasks both require some common object as input, they have a
resource constraint. Resource constraints are not inherent in the nature of the
tasks but are rather a product of the way the tasks have been assigned to actors
or other resources.

4.4.1 Shareable objects

If the object is shareable, then there is no constraint; each action may
simply use the object as it requires. One way to avoid coordination problems
with shareable objects therefore is to freeze the common object, that is, to allow
actions to only use the object. Which common objects are frozen depends on
organizational criteria. For example, a common object used by tasks carried out
by two actors who do not communicate (e.g., actors in different groups within
the organization) is likely to be frozen to eliminate the need for those two actors
to coordinate.

In Computer Systems Co., the interface the system presents to the end user is not
changed in order to eliminate the need to coordinate the end user’s use with the

development of the system.

442 Non-shareable, reusable objects

If the resource, like a tool, is not shareable but is reusable, then:

use (object, action situationl) A

1!
use (object, actionz, situationz) A
action1 # action2 =

~overlap(situationl, situationz).

Therefore, to avoid this constraint, the actors must either choose different
objects or use the same object at different times. Choosing different resources
will be considered in the next section.
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A special case of this constraint occurs when a single actor has more than
one task to be performed, in which case the actor’s time is the limited resource.

In Computer Systems Co., software engineers have to pick which problem reports to

investigate first.

To ensure that the times during which the object is used do not overlap -
basically involves assigning the object to be used exclusively by a particular
action or actor. Assignment mechanisms are discussed in the next section.

In the reorganized Computer Systems Co., engineers check code out of a library to

prevent simultaneous updates.
4.4.3 Non-shareable, consumable objects

If the object is consumable, then the two tasks can not be simultaneously
performed. Iassume that the tasks have been described at an atomic level, so
reducing the amount of the resource needed is not an option, or at least, is
interpretable as not performing some task.

There are several alternatives. First, one of the tasks can be abandoned.
One approach is first-come, first-served; which ever task gets the resources
simply uses them and the other action does not.

Second, some actor may know the two tasks and evaluate the tradeoffs
between them. Picking the order for the tasks or choosing which should be done
or not done can be done randomly or based on the particular actor’s preferences.
It may be preferable that this choice reflect organizational priorities.

Third, more of the necessary resource can be assigned to the task, using
mechanisms discussed in the next section.
5 Category 2: Dependencies between tasks and objects

The second category of coordination tasks involve assigning objects and
especially the effort of actors, to tasks. As discussed above, I view the efforts of
actors as a special kind of resource. In this section I mostly discuss the problem
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of assigning a fask to a particular actor to be performed, but the techniques
discussed can be use to assign any kind of resource to a task.

I classify the second example mentioned in the introduction, the routing of
problem reports to a software engineer capable of fixing them, in this broad
category. In the most general case, this assignment can involve hiring or firing
employees, acquiring new tools or raw materials, etc. This assignment may be
done in a hierarchical fashion as subunits of the organization are assigned to
work on high-level goals.

Typically, some actor identifies a task that needs to be performed and
assigns another actor and the necessary resources to the task. I call the actor who
knows the task the assigner; the actor who eventually performs the task, the
performer. In order to assign resources to a task, the following steps must be
performed:

1)  identifying what resources are required by the task;

2)  identifying what resources are available;

3) choosing a particular set of resources;

4) inthe case of an actor, getting the actor to work on the task.

In my analysis, I consider these steps in this order. Obviously these steps are
interdependent. For example, the way the requirements of the task are
characterized depends on what kind of actors are available.

In principle, these steps can be performed in any order; for example, tasks
can be chosen that can be performed with objects available (and that achieve
higher level goals). One manager interviewed suggests that in software
development, a manager may divide the project into modules based on abilities
of programmers. Idid not, however, observe this order of steps for the
engineering change processes that I studied.
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5.1 Identifying task requirements

The first step in the task assignment process is to determine what type of
resources the task requires. Identifying task requirements requires domain-
specific knowledge about the task, but the knowledge may be quite abstract.

In Computer Systems Co., in order to pick a software engineering group to fix a problem,
a marketing engineer needs to know that the particular problem seems to be in the file
system (for example) and that a particular group is responsible for the file system, but not
anything about how to fix any kind of problems.

I assume that actors have an action that calculates what kind of actor (or
other resource) is required by a task:

calculate-task-requirements (Performer, Task)
Effects: know (Performer, task-
requirements (Task))

This level of indirection—that is, having the assigner know which
performers can manage the task requirements instead of knowing directly about
tasks—avoids having the assigner know something about all possible tasks. We
then assume that all assigners know:

know(assigner, can(performer, task-

requirements (Task)) = can(performer (Task)))

The assigner may need to know what kind of actors are available to be
able to characterize the task requirements along the same dimension as the actors
are differentiated. Many researchers have considered the question of
differentiation between actors. There are two extremes: specialists and
generalists. In a specialist model, only one actor can perform any given task. In
the generalist case, any actor can. In reality, things are rarely so precise, but
- organizations will be located along the spectrum between these two extremes. It
may be possible to design systems which flexibly move from specialists to
generalists under varying conditions.
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In Computer Systems Co., programmers are specialists; to assign a problem report to an
actor requires determining what part of the system is involved and assigning the problem
fo the appropriate actor. Other divisions of the same company use generalists actors; an
incoming bug report is simply assigned to the next available actor to be fixed. (These two
bases for organizing software maintenance are sometimes called module ownership and

change ownership (Embry and Keenan, 1983).)

5.2 Ideﬁtify'ing actors who can perform the task

If the actor who knows the task has a goal of having the task performed
but can not {or will not) perform the task itself, then it must identify which other
actors can perform the task.

5.2.1 Assigner knows a potential performer

The simplest possibility is that the assigner might know which actors can
perform the task from the task requirements. Note that there may be many
possible performers, as in the case of a generalist system, or only one.

For example, there may be a single actor that performs all tasks of a
particular kind; each actor simply knows the association from a particular type of
task to the performer.

In Car Co. and Airplanes, Inc., engineers rarely do the detailed design of components
themselves. Instead, this task is performed by a designer who works with the engineer.
When the engineer needs a detailed design worked out, he or she simply calls the designer.

In Car Co. and Airplanes, Inc., the drafting for all final drawings is done by workers in a
drafting room. When an engineer or a designer need a final drawing prepared, they
contact the drafting room to have it done.

In Computer Systems Co., customers only need to contact the response center to havea

problem fixed.

This can be represented as the assigner knowing;

can (performer, task-requirements (task))
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for various classes of task-requirements.

An assigner might remember a performer found earlier for a similar task,
especially if the particular task assignment is done repeatedly or if searching for
an actor is expensive compared to the perceived benefit of finding an alternative
performer. As with any learning, there is a danger of over-generalization: an
assigner may send tasks to the wrong performer because he knows him.

In Computer Systems Co., a marketing engineer can learn which software engineer is
responsible for a particular part of the system and communicate directly with that

engineer.

In Car Co. and Airplanes, Inc., when a part is redesigned, rather than attempting to find
a new supplier to manufacture the new part the contract of the current supplier is often
extended.

Again, this can be represented by which actors the assigner knows can
perform the task.

In other cases, the assigner may be able to calculate from some
characteristic of the task and knowledge about the organization which actors are
potential performers.

In all sites, if a downstream group encounters a problem while processing a new
component, they contact the engineer whose name is on the drawing to have the problem

resolved.

In Car Co., the material scheduling group tells suppliers when to ship parts, how many to
ship and where to ship them. This group is given the production schedule which
indicates how many of each model of car are to be manufactured and when the cars will
appear on the assembly line. They also know which parts are required for each car and

where they are used on the assembly line.

In all sites, problem reports are routed to the engineers responsible for the affected parts.
To do this routing, an actor must know what components are affected and which

engineers are responsible for those components.
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In Computer Systems Co., this knowledge is distributed hierarchically:
the response center determines which product is involved and therefore which
marketing engineer, the marketing engineer determines which system and which
project and the project contact, which specific module and which engineer.

This can be represented by assuming the actor has an operator that moves
directly from the representation of the task to knowledge about which actor can
perform it:

calculate-which-performer (Performer, Task)
Adds: Jactor: know(Performer, can (Actor,

Task))

5.2.2 Assigner asks someone who knows

A second way to find potential performers is to ask other actors,
informants, for the information. Morgenstern (1988) discusses a similar problem,
that of an actor planning an action that requires the use of the knowledge of
another actor. To do this, the assigner must know which actors are likely
informants and be able to communicate with them. Note again that there may be
multiple informants and potential performers. The informant role may be filled
by various forms of technology, such as a yellow pages, computerized or on

paper.

There are two possibilities. First, the informant may tell the assigner how
to find a performer.

In Car Co., one engineer received a call asking him about some problem in a part for
which he was no longer responsible. He therefore told the caller how to contact the

correct engineet.

We can model this situation as follows: the assigner has the following
recipe:
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want (assigner, task)

know (assigner, dJActor:

know{informer, can(Actor, task)))

Therefore, in order to accomplish its goal, the assigner performs the following
communication action:

request (assigner, informer, informref (informer,
assigner, AX: can(X, task)))

that is, the assigner knows that the informer knows some actor that can perform
the task, so the assigner asks the performer to tell it.

“Alternately, the assigner may ask the informer to perform the task
assignment, as discussed in section 5.6.

5.2.3 Market-like assignment

Finally, the assigner may believe that some actors are capable of
performing the task, but not know which actors in particular. In this case, the
assigner can ask many actors, only some of whom are possible performers.

There are two possible requests. First, the assigner can ask the actors if
they can in fact do the task; the assigner then chooses one of the actors and
assigns the task. This model is used in a market-like setting, where the assigner
sends requests for bids to potential performers and those who are able to
perform the task respond with bids. It also describes the situation where an
assigner “asks for volunteers.”

In Car Co. and Airplanes, Inc., the task of manufacturing a subcomponent is frequently
put up for bids; manufacturers interested in performing the task submit bids.

I'represent the recipe in this situation as follows:

want {(assigner, task)

know (assigner, dX € actors: can(X,task))
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The application of this recipe leads to the following communication:

VX € actors: request (assigner, X,

informtrue (X, assigner, AX can(X, task))

that is, the assigner wants the task performed and knows that some actor in the
set actors candoit. The assigner therefore asks each of the actors to say
whether or not they can do the task. When the actors reply, the assigner will
know (assigner, can(performer, task)) for some set of performers.

Second, if the assigner does not care how many performers actually do the
task, it can simply broadcast the description of the task to all possible performs.
Each performer evaluates the task and performs those it chooses to. (Note that
some tasks may be performed repeatedly and others not at all.)

This situation can be represented as the following recipe:

want (assigner, task)

know (assigner, JX € Actors: can(X,task))

and communications action:
VX € Actors: request (assigner, X, task)

The major advantage of the final two mechanisms discussed is that the
pool of possible performers is increased, potentially reducing the cost of
performing the task.

However, the coordination mechanism has a higher cost. First, sending
messages to multiple actors may be expensive, even if there is some way to
broadcast a description of the task to numerous actors. Second, each potential
performer must expend some effort to evaluate if they can perform the task and
prepare a bid.
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5.3 Choosing an actor to perform the task

If there are multiple performers identified in the previous step, the
assigner must choose one in particular to do the task.

In the simplest case, there is only one potential performer, that is, only one
actor that can perform the task. Often this may be due to specialization of roles
of departments or individuals (i.e., who is supposed to do a particular tasks) than
to a distribution of ability (i.e., who is capable of doing the task).

In all sites, all drafting was done by the drafting room, thus eliminating the need to
decide who should prepare the final drawings.

" In Car Co., some components were manufactured by a subsidiary company. In these
cases, the parts would generally not be put out for bid; instead, the subsidiary would be
given the contract.

In the general case there may be several actors who could do the task
making it necessary to choose one. To choose a particular actor or other resource
from those available requires some knowledge for evaluating how good a
particular actor will be at performing the task. There are many possible bases for
making this decision; here I will only try to suggest a few of the more common.
Which one to use depends on the nature of tasks being coordinated. The
knowledge necessary can be represented abstractly, as the capability to take a list
of potential performers and somehow choose one.

pick-best-actor (Performer, Actors)

Adds: know (Performer, best {Actors))

One basis for such a decision is to choose a technique that reduces the cost
of making the decision, such as picking the first actor found or choosing
randomly from the actors presented. If the task is performed repeatedly, a
possible strategy is to always pick the actor that performed the task previously.
This strategy has three advantages: first, as mentioned before, it eliminates the
need to search for alternative performers; second, it eliminates the need to choose
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between already known performers; and third, the performer may become more
experienced at performing the task.

In Car Co. and Airplanes, Inc., when a part is redesigned, rather than attempting to find
a new supplier to manufacture the new part the contract of the current supplier is often
extended.

Otherwise, the assigner must have some evaluation criteria to determine
which actor will perform the task “best” or at the lowest cost. Using these
heuristics requires additional knowledge, such as to what other tasks a particular
resource has been assigned or the relative values of different resources.

In Computer Systems Co., a call processing system is used to assign calls to the next free
call handler in the response center to keep the load on the actors balanced and thus reduce

the overall response time.

In Car Co. and Airplanes, Inc., some parts are put up for bids. The bid returned includes
the cost of providing the part, and the lowest bid can be selected.

54  Getting a chosen actor to perform a task

Once the best actor to perform the task has been identified, the assigner
must get that actor to actually perform the task.

For the present study, I assumed that actors accept their roles within the
organization and will therefore accept legitimate requests, making it unnecessary
to convince the actor that it should perform the task. If this assumption were
relaxed, then this step would have to include considerations of the possibly
different interests of the actor.

In some cases, the notification may happen as a side-effect of an earlier
step. For example, if the performer chooses itself to do the task, as discussed
below, then presumably it already knows to do the task.

Otherwise, this assignment requires some mechanism for communicating
with the performer. In the sites studied there are two basic mechanisms for this
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notification. First, the assigner may send some kind of task assignment message
to the performer.

In Car Co., the purchasing department sends contracts to the chosen suppliers.

In all sites, engineers receive problem report messages or change requests and send work

orders to designers or drafters.

This situation can be modelled as the following recipe:

want (assigner, task)

know (assigner, can(performer, task))

that is, the assigner wants the task do and knows that the performer can do it.
Therefore, the assigner simply requests that the performer do the task:

request (assigner, performer, task)

By the definition of the request action (in Chapter 2), this results in the performer
having a goal of performing the task.

Second, the assigner may make some kind of change to shared objects
which is interpreted by the performer as a signal to do some task.

In Car Co., when an engineer changes a part, the new part description is entered in a
parts database. These changes are picked up by the purchasing department as an
indication that they should find a supplier to start making the new parts and by materials
management, that they should plan for the change.

In terms of the representation, this mechanism is similar; the assigner
performs some action which results in the performer having a goal of performing
the task. The exact axiomatization will depend on the details of the shared
object.

In order for the performer to perform the task, the assigner must have
some way to describe the task. Ihave assumed that the actors share a common
language in which the task can be described, but developing such a language
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may be problematic, especially when tasks are assigned across organizational
boundaries.

5.4.1 Disposition of results

The description of the task includes what to do with the result. The
original actor may or may not care about what happens to the result; it might ask
that the result be returned to it or be sent to someone else.

We can represent the former as an additional request:

request (assigner, performer, informref (performer,
assigner, AX: X=result (task))

“that is, the assigner asks the performer to tell it the result of the task.

5.5  Assigning resources

Having chosen a resource, an action may need to ensure that no other
action will use it at the same time. The simplest method is for each actor to that
wants to use the object to to check if it is being used and only try to use it if it is
unused.

The status of the object can be checked either directly or through some
kind of locking mechanism, like the fact that the code for the module is signed
out of the code library. Either case can be modelled as an action:

check-if-busy (Performer, Object)

Adds: know (Performer,
JAction: use (Object, Action, now) v

~Jaction: use(Object, Action, now))

To actually do the assignment means changing the status of the object so other
actors see that it is busy.

This assignment may require some kind of mechanism for choosing which
tasks gets the resource if multiple tasks are waiting for it. For example, a queue
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waiting for a resource ensure that only the head of the queue will try to use it
next; assigning numbers to people waiting for service and using a sign for the
next in line serves the same function.

Alternately, the tasks may be assigned a particular time during which they
can use the resource. Such a mechanism is much simpler if the assignment is
centralized in one actor. An actor that wants to use an object sends a request for
it to this actor and waits for a reply saying that it has been assigned.

5.6  Assigning coordination tasks

Performing a coordination method is a task that may itself be assigned to
some other actor to be performed. This assignment may occur using the methods
described here and may occur at any stage in the process.

Typically assigning the task assignment task is easier than simply
performing it because of the specialization of actors’ roles. Commonly, the entire
process of identifying, choosing and notifying the performer is assigned.

In Computer Systems Co. and Airplanes, Inc., customers do not need to know how to
assign a problem report to a particular engineer because they can simply send all problem
reports to another actor (in Computer Systems Co., the response center;in Airplanes,

Inc., a customer engineer).

This situation can be modelled as the following recipe:

want (assigner, task)

know (assigner, can(performer, task))

The application of this recipe leads to the following communication:

request (assigner, performer, task)

that is, the assigner wants the task performed and knows that the performer can
do it, so it asks the performer to perform the task. Note that the assigner’s model
of the performer is quite independent of the performer’s actual capabilities. As
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in the example, the performer may perform the task by assigning it to someone
else,

Alternately, the assigner may know that the task will be reassigned. For
example, in the case where an informant knows which actors can perform some
task, the assigner may send the task to the informant who forwards it to the
performer himself.

In Airplanes, Inc. the engineering change control group receives tasks and forwards them

to the next person to do something.

This situation can be modelled as the following:

want (assigner, task)

know (assigner, JActor know(informer, can (Actor,

task)))

The application of this recipe leads to the following communication:

request (assigner, informer, task)

that is, the assigner wants the task performed and knows that the informer
knows some actor that can do it. Therefore, the assigner asks the informer to

perform the task, knowing that the informer can ask someone else.

Sometimes the actor first attempts to perform the task and assigns it if it
can not do it.

In Computer Systems Co., if the marketing engineer can not locate a reported bug, then
the problem is sent to the bug tracking team for further investigation.

In Airplanes, Inc., the liaison engineers can fix minor problems themselves but refer

problems that they can not quickly diagnose to the design engineers.

This can be modelled by assuming that the actors have an action that can
perform some of the tasks and which has a lower cost than asking someone else.
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In this case, the actor will first try to perform the action; if it fail, they will then
try the second action, that is, asking someone else. '

Sometimes only part of the task assignment process is assigned. One can
imagine a situation where one actor determines which actors could perform the
task, presents the list to a second actor who picks one of them and gives the
choice to a third actor who notifies the selected actor.

In some cases, performers may perform some of the task assignment
process themselves. For example, there might be a queue or set of tasks waiting
to be performed; free actors simply take the first task on the queue or look
through the set until they find a task they can perform.

In Computer Systems Co., customer calls are placed a queue; the response centre
specialists can choose which calls to answer, although their overall performance is

monitored.

6 Category 3: Dependencies between objects

The third category in the typology is dependencies between different
objects. In this domain, an important set of dependencies arises from parts that
physically touch each other or fit together. If two tasks use different objects that
are interdependent, then the two tasks are interdependent as if they both
depended on a common object.

Depending on the level of decomposition of the objects, two tasks may
appear to be using a common object because they are each using different parts
of a more complex object. For example, two tasks may both appear to consume
an orange, because one requires the rind and the other the pulp.

To manage these interdependencies, actors must first identify that they
exist and, second, decide what to do about them. For the task I studied, “what to
do” is to possibly change the interdependent parts to match changes to other
parts. The final example discussed in the introduction, engineers discussing
changes with the engineers responsible for other modules, who possibly make
additional changes to those modules, falls in this category.
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6.1 Identifying interdependencies

The procedures discussed in section 4 for determining when two tasks use
the same object must be extended to manage interdependent objects. For
example, an important part of developing a change to a part is identifying
interactions between the part being changed and other parts.

One technique for locating interdependencies are the engineers’ mental
models of the product and the organization.

In all three sites, engineers usually know with which parts their parts interact and with
which other engineers they therefore need to discuss a change, either through past

experiences or fraining.

Problems often occur when a dependency is for some reason overlooked,
such as the fatal system errors caused by the word processor at Computer
Systems Co.

These mental models can be represented by the engineer knowing about a
set of relationships between the components. For example, the fact that one
module uses an interface provided by another might be represented by:

know (actor, uses (modulel, modulez))

In addition, all three sites use various sorts of physical models of the
product as a mechanism by which engineers can determine the effects of a
proposed change.

In Computer Systems Co., engineers use test systems (computers running the latest

release of the operating system) on which a changed module can be added and tested,

Car Co. and Airplanes, Inc. use various forms of mockups to allocate space for new parts

or to check for interactions with existing parts.

These physical models can be consulted to determine if there is an
interdependency. We can model this consultation with an action, such as:
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check-model~for-interdependencies (Performer, Model
Component)
Adds: VOther-component €
components (Mcdel) :
know(Performer, physically-

interdependent (Other-component,

Component) )

In all three cases there is a problem keeping the models up-to-date. A new
part may appear to work or not work because the model has earlier versions of
some other parts.

6.2 Evaluating effect of interdependencies

Once the dependency has been identified, the effect of the change on these
parts must be evaluated. Identification of a dependency by some actor results in
that actor knowing about a new task of checking for problems. These tasks could
be then assigned to some actor, using the processes discussed above.

In all three sites, an engineer planning to make a change consults with the engineers
responsible for the other parts. Those engineers must perform additional tasks to ensure
that their parts will not be affected by the proposed change or to determine the need for

another change.

We can model this process of task creation by a rule such as:

know(actor, plausible (want (actor,
change(componentl)) A physically-

interdependent (component componentz),

1!
goal (actor, change(componentz))))

Note that this is actually only a plausible inference; many changes may not affect
other components.

Second, additional work may be necessary to ensure that desired
relationships are maintained. For example, there may be many physical copies of
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a single logical object, such as a manual; there are many copies of the manual, but
the information in those manuals should be the same. However, if the
information is updated, the physical and logical objects may get out of step,
requiring additional work to bring them into agreement. This problem can be
especially difficult if there are simultaneous updates can be made to the physical
copies, in effect creating multiple versions of the object. '

7  Related work

Given the importance my definition of coordination places on
dependencies, I will briefly review some related work in organizational
behaviour and artificial intelligence on different kinds of interdependencies.

71  Interdependence in organizational behaviour

Dependence has been considered an important reason for needing
coordination and many researchers have investigated ways of characterizing it.
In organization theory, dependencies are usually considered to arise between
actors, either individuals or work units.

7.1.1 Dependency as the inverse of power

Dependency has been viewed as the inverse of power, where power is the
ability of one actor to control the outcomes of another. For example, in
Emerson’s (1962) view, an actor A depends on an actor B if A “aspires to goals or
gratifications whose achievement is facilitated by appropriate actions on B's
part” (p. 32), but he did not discuss how this concept could be measured. He did
suggest four ways to reduce the tensions of power relationships, such as
withdrawal of actor A from the relationship or development of alternatives to
actor B, but did not consider situations in which the imbalance is maintained.

Victor and Blackburn (1987) characterize the actions available to each actor
by considering a pay-off matrix showing the outcomes for each actor for each
combination of decisions by the two actors. They note three possibilities: the
outcome for an actor could depend entirely on the action taken by the other
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actor, jointly on the actions taken by both units, or only on its own actions. They
therefore define dependence as the ratio of the sum of squares of outcomes
controlled by or dependent on another actor to the sum of squares of all
outcomes. They also define the degree of conflict between the actors by looking
at differences in desired outcomes.

These two conceptualizations of dependency provide a way to measure
the strength of the relationship between two actors but they do not suggest what
must be done to manage it. They seem to be focused exclusively on the one-time
effects of actors’ decisions rather than on-going processing of tasks.
Furthermore, it is not obvious that it is feasible to obtain empirically the various
outcome values or even the possible decisions.

7.1.2  Topologies of interdependence

Thompson (1967) categorizes dependency in terms of work flow between
actors. He describes three kinds of dependencies: pooled, where units get inputs
and contribute outputs to the organization independently; sequential, where the
output of one unit is input to another; and reciprocal where one unit's output is
also its input, possibly through a series of other units. Thompson suggests that
organizations should use different coordination methods for each kind of
dependency: for pooled, organizations coordinate by standardization; for
sequential dependency, by plans; and for reciprocal dependency, by mutual
adjustment.

Van de Ven, Delbecq and Koenig, (1976) attempt to empirically test some
of Thompson’s ideas. They suggest a fourth dependency to add to Thompson’s
three: team dependency, where actors work together to complete a task with no
“measurable temporal lapse in the flow of work” (p. 325). They examine three
categories of coordination mechanisms to manage these dependencies:
impersonal, which includes various kinds of programming, such as rules, plans
or schedules; personal, such as horizontal or vertical individual contacts; and
group, such as planned or unplanned group meetings.
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In a questionnaire study of 197 units of a large state employment security
agency, they find that as the degree of dependency between members of the unit
increased, so did the overall use of coordination mechanisms; in addition, the use
of group and personal coordination mechanisms increases, while the use of
impersonal coordination mechanisms decreases.

One problem with Thompson’s characterization of dependency is that in
some ways the decision about how to arrange the work flows is itself a choice of
a coordination mechanism as opposed to a necessary characteristic of the task.
For example, given a task to be performed repeatedly by a group of actors (e.g.,
processing change notices), one can either break the task into small subtasks (e.g.,
checking the part numbers are correct, checking the availability of new parts,
etc.) and have each actor perform one subtask for all tasks (as on an assembly
line) or assign complete tasks to different actor to perform. Thompson’s work is
thus more accurately described as a typology of topologies of work flows.

7.1.3 Dependence depends on exchange of resources

McCann and Ferry (1979) take a view of dependence similar to Thompson.
However, they focus on the exchange of resources between actors. They
characterize these exchanges along six dimensions: 1) the number of resources
exchanged; 2) the amount of the resources exchanged per unit time; 3) the
frequency of exchanges; 4) the amount of time before loss of the resource has an
effect; 5) the value of the resource, including the cost of substitutes, the cost of
locating a substitute, the importance of the resource and the percentage of time
actor A’s needs were satisfied by actor B in the past; and 6) the direction of
resource flow, to, from or both ways between actors. They suggest that
dependency increases as these dimensions increase. They do not, however,
suggest specific ways to manage dependencies, aside from noting that managers
of interdependent work units should ensure that both units have same
perceptions of the level of dependence and that the perception is accurate.
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7.2  Dependence in Al research

Researchers in distributed artificial intelligence consider what kinds of
dependences arise between plans or goals.

7.2.1 Goal relationships

Wilensky (1983) suggests a taxonomy of goal relationships (p. 51) and
distinguishes between negative and positive relationships. Negative goal
relationships include resource limitations, mutually exclusive states and what he
calls preservation states (e.g., wanting to take a day off vs. wanting to keep one’s
job). Resources include time (deadlines or need to synchronize with an external
event), consumable functional objects, nonconsumable functional object and
abilities. Positive relationships include mutual inclusion (the planner has the
same goal for more than one reason) and plan overlap (where a single action
satisfies several goals).

Ways of resolving conflicts include replanning (i.e., looking for a way
around a problem), trying to change the circumstances (e.g., getting rid of the
deadline, changing the timing of the external event, increasing the capacity of a
resource) and fully or partially abandoning a goal.

7.2.2  Plan relationships

Several researchers consider possible relations between goals and actions
when trying to merge plans. In this model, the two plans are independently
generated and then merged to create a single plan for both actors that avoids
conflicts and takes advantage of possible synergies. .In other cases, the input may
be a single plan that includes multiple actors. For example, Stuart (1985)
describes a system that took a multi-actor plan as input and inserts
synchronizing operations to eliminate conflicts between different operations. If
one operation B has a particular precondition that is set by another operation A,
‘the resulting plan will require that operation A be executed before operation B.

von Martial (1989) suggests both negative and positive relationships
between plans executed to achieve different goals. Negative relationships
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include what mighf be called outcome conflicts, where the goals of the two plans
are logical inconsistent and can not be simultaneously satisfied, and resource
conflicts, where the plans together require more of a resource than is available.
He further distinguishes between consumable and non-consumable resources,
noting that conflicts over non-consumable resources—such as two plans
requiring the same tool—can be resolved by adding some kind of locking around
or scheduling the use of the resource.

Positive relationships include equality, where two plans happen to require
the same actions, and consequence relationships, where a desired subgoal of one
plan is the result of the other plan; thus both plans can be satisfied by having
only one actor do those actions. von Martial (1989) also discusses what he calls
favour relationships, where a slight modification of one plan accomplishes a goal
of the other plan. The modified plan requires additional work on the part of one
actor, but much less work in total. (For example, if both actors plan to go to the
post office, one to mail a parcel and the other to buy stamps, both plans can be
achieved at lower total cost by having one actor do both errands.) In addition,
von Martial considers requests as a kind of dependency, since satisfying these
requests requires modifications to the other actor’s planned actions.

Decker and Lesser (1989) are also interested in coordinating actors by
merging partially shared plans. They characterize the possible relationships
between goals in a goal hierarchy, in which a goal is expressed as a conjunction
or disjunction of subgoals. They point out that if there are no interactions
between the subproblems, then there is no need to cooperate.

Based on a consideration of the goal hierarchy, they suggest four generic
categories of relationships: graph relations, temporal relations, domain-
dependent relations and resource relations. Graph relations are derived from the
graphic representation of goals and subgoals; these might be called syntactic
relationships. For example, one goal might be a subgoal of another; if two goals
have equivalent subgoals then they are equivalent. Temporal relations are
derived from the start and finish times or durations of actions and include before,
after, overlaps, etc. Domain-dependent relations include relations such as
inhibits, cancels, enables, constrains, etc. These might also be called semantic
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relationships. For example, goal A inhibits goal B if when A is achieved, B can
-not be achieved. Domain-dependent relations are domain dependent because
they can be evaluated only with respect to particular domain but are generic
because they arise in many domains. Finally, goals may be linked by resource
constraints; their system does not address these relations but they recognize that
they exist.

7.3 Conclusion

Most authors seem to agree that coordination is necessary to solve
problems caused by interdependences. Most researchers in organizational
behaviour consider interdependencies between work units. The notion of
interdependence, however, is not well defined or obviously operationalizable.
Thompson (1967), for example, suggests three different kinds of interdependence
but he does not really indicate how you should identify these in a real
organization, apart from the nature of the interactions. This lack is most
apparent in his examples, since it is unclear from his discussion which came first,
the organizational structure or the interdependences. In particular, one might
wonder whether Thompson could have identified suboptimal organizations
where the interdependences existed but were not reflected in the organizational
structure.

Because I consider the choice of which actor should perform a action part
of the task of coordinating, I believe dependencies are best thought of as between
actions rather than between work units. Once the actions have been assigned to
particular actors, then the dependencies may appear to be between those actors.

I think the Al researchers are on the right track in considering possible
relationships between goals and actions rather than work groups and many of
the interdependencies they identified can be found in my typology. However,
the lists of possible relations generated in early research seem some what ad hoc.
I have attempted to address this issue by basing my typology on possible
relationships between the tasks and objects and on the use of common objects.
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CONCLUSION

“Tut, tut, child,” said the Duchess. “Everything's got a moral if
only you can find it.”

—L ewis Carroll, Alice in Wonderiand

In this chapter, I summarize my findings and show how the modelling
technique and typology developed in this thesis can be used to solve the
benchmark problems posed in the introduction. I conclude by discussing some
ideas for future research.

1 Summary of results

In Chapter 1, I begin my study of coordination by describing some of its
properties. I then offer a better definition of coordination in terms of
coordination problems caused by interdependencies between elements of a
coordinated situation—actors, actions, goals and objects—and coordination
methods performed to address those problems.

In Chapter 2, I present a technique for modelling coordination methods,
based on approaches to modelling autonomous actors developed by researchers
in distributed artificial intelligence. A recipe is defined as what someone knows
when the they know how to do something. Irepresent what they know in an
augmented first-order logic. In particular, I model individuals’ goals, capabilities
and knowledge and show how an actor attempting to achieve its goals
communicates with other actors.

I present my methodology for studying and modelling organizations in
Chapter 3 and describe how I use these techniques to model real organizations

327



performing a coordination-intensive task, namely engineering change
management. The results of field work in 3 organizations is presented in
Chapters 4, 5 and 6, along with models of parts of the engineering-change
management process involving the design engineer.

In Chapter 7 I develop a typology of coordination problems and use it to
organize the coordination methods found in the case sites. The typology is based
on kinds of interdependencies that arise between elements of a coordinated
situation. I group the initial four elements—actors, actions, goals and objects—
into two, tasks and objects. Tasks include both performing an action and
achieving a goal; objects include all things affected by actions, including, as a
special case, the effort of actors. This results in a three element typology,
interdependencies between 1) tasks and tasks, 2) tasks and objects and 3) objects
and objects.

Interdependencies between tasks and tasks are divided into task-subtask
relationships and interdependencies between otherwise unrelated tasks.
Problems in the first category can be handled, for example, by task
decomposition.

I further divide the second category, interdependencies between otherwise
unrelated tasks, by looking at the ways two tasks can be interdependent. I
conceptualize this interdependence in terms of common objects, that is, some
object that is created or used in some way by both tasks. This conceptualization
results in another three part division: task-task interdependencies can be create-
Create, create-use or use-use.

For example, if two tasks both create a common object, then it may be
possible to merge the two tasks or perform only one of them, possibly saving
effort. (This category includes the first of the examples of coordination presented
on pages 20-21, checking if a reported problem duplicates a known one to avoid
duplicate problem reports.)

Task-object interdependencies, the second category of my typology,
include assigning a resource or an actor to a task. (This category includes the
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second of the examples presented on pages 20-21, the problem of routing a
problem report to a software engineer who can fix it.) In the thesis, I primarily
considered problem of assigning an actor to a task, but process of assigning a
resource is parallel. I present a four-step framework for task assignment,

1) identifying task requirements, 2) identifying actors who could work on the
task, 3) choosing the best actor and 4) getting that actor to perform the task.

For example, difference between hierarchical and market assignment
mechanisms is way that the assigner identifies possible actors. In hierarchical
assignment, the assigner already knows which actors are available; in market
assignment, the assigner finds out by asking them.

The final category of the typology is object-object interdependencies. The
problem here is of finding and managing interdependencies between objects. In
the case of engineering changes, these interdependencies arise because a change
to one part of a product may result in the need for a change to other
interdependent parts. This category includes the third of the examples presented
on pages 20-21, the need for software engineers to consult other engineers when
making a change to a module.

2 Solutions to benchmark problems

In this section, I will discuss how the modelling technique and typology of
coordination problems developed in this thesis can be used to answer the
benchmark questions I posed in the introduction to this thesis. Iwill first briefly
recap the problems and indicate how I solve them.

First, in what ways can a given organization be arranged differently while
achieving the same goals? As a concrete example, I discuss the way problem
reports are assigned to software engineers in one of my case sites and consider
alternative ways the engineers could have been organized.

Second, what kinds of information technologies might be useful to
support a particular organization? I use the modelling technique to suggest a
system to support software engineers working on problem reports.
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Finally, how might the preferred structure for an organization change
with extensive use of information technology? I briefly show how information
systems differentially affect different organizational forms, possibly changing
which form is preferred.

21  Organizational redesign

A strength of the theoretical framework developed in this thesis is that it
allows me to go beyond the three sites I studied to a more general coordination
level. Understanding the coordination problems addressed by the organization
suggests alternative coordination methods that could be used.

For example, many of the actors in the Computer Systems Co. case
perform some part of a task assignment process. The response centre
distinguishes problems by product and assigns them to an appropriate
marketing engineer; the marketing engineer assigns problems to a particular
group; and the group contact, to a particular engineer. Such a process is
necessary because engineers are specialized by module—only a single actor can
fix a particular problem—and the task assignment problem is to find that
particular actor and get it to fix the problem.

In other parts of the company, including, apparently, the support group
for released versions of the operating system, programmers are generalists and
multiple actors can fix a problem. I did not study this group in detail, but it
seems that tasks are assigned to actors based on load; the first free actor takes the
next task on the list.

This alternative organization suggests the possibility of some kind of
market-like task assignment system for problem reports. In this model, a
description of each problem report would be sent to all available engineers. Each
engineer who could fix the bug would prepare a bid, saying how long it would
take to fix the bug, how much it would cost or even what they would charge to
doit. The lowest bidder would be chosen and the task assigned to him or her.
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The analysis in chapter 7 shows what the actors need to know to perform

- this process. First, assigner needs to know which actors are potential performers
and needs to be able to communicate with them. Second, there must be a
common language in which the tasks can be described. Finally, the assigner need
some way to evaluate the bids returned.

The performers need to be able to evaluate each task and estimate how
long it would take to fix the problem (or how much it would cost) and to
communicate with the task assigner.

2.1.1 Ewvaluating alternative organizations

Given this framework, we can evaluate the advantages and disadvantages
of each kind of organization. I have not fully worked out ways of evaluating
these costs and benefits, so in this section, I will simply suggest informally how
such an evaluation might proceed.

To compare the organizations, we must first decide what it is the
organizations do, in order to evaluate how well they do it. The model I will
adopt here is that of a task processor. Tasks arrive at the organization, needing
some kind of processing. The organizational problem is to assign the tasks to
some actor that can execute them. (This is by no means the only or even most
appropriate model, but it does have the advantage of simplicity.)

Given this model, there are many possible objective functions, including,
for example, the number of messages sent in each model (Malone, 1987), the total
processing time for each task, the total cost of different organizations with the
same capacity, the coordination cost (i.e., the cost of the task assignment process)
and the production cost (i.e., the cost of performing the task) in each
organization, or the organization’s vulnerability to the failure of an actor
(Malone, 1988). Many other factors could be added to complicate such a model,
such as organizational learning or individual motivation. At present, this list of
factors seems quite ad hoc; further research may provide a better framework for
evaluating alternative organizations.
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Obviously, any of these comparisons depends on many assumptions
about, for example, the relative speed of actors, the number of actors, the
communications paths, etc. In principle, most of these values could be derived
from the case study. Rather than make these assumptions explicitly, however, I
will simply compare the organizations qualitatively.

Viewed this way, the current organization has a lower cost of
coordination; assigning a task involves sending only three messages. However,
it is vulnerable to the failure or overloading of a single actor (the engineer
responsible for each module has no backup). Because each actor is a specialist,
presumably he or she will be able to fix problems relatively quickly. However, if
the load is distributed unevenly (i.e., some modules have more problems than
others) then a problem may have to wait until the appropriate specialist is free,
thus increasing the total time to finish a task. Also, some specialist may be
underutilized, increasing the cost of the whole organization without increasing
its performance.

The cost of the task assignment in the generalist model is also low.
Furthermore, problems are handled by the next available actor, minimizing
waiting time and reducing vulnerability to failure. However, because each actor
is a generalist, the time he or she takes to fix a module is likely to be higher than
in the specialist model. Furthermore, since the tasks any actor performs are
randomly distributed, the organization takes no advantage of any difference
between actors in performance and no actor has much opportunity (or incentive)
to learn to improve.

The market-like model has a much higher coordination cost, requiring
many messages for each task (one for each bid request and bid). (The cost of
processing these messages includes, for example, the cost of having each
engineer read each problem report.) However, problems can be immediately
assigned, again reducing the waiting time. Furthermore, in this model, the task
will be assigned to the actor with the lowest bid, thus taking advantage of
differences in ability. If the actors learn, then can specialize, preferentially
bidding for one type of task and constantly improving their performance on it.
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2.1.2  Apprentice system for organizational design

If better formalized, the kind of analysis sketched above could be
incorporated into an expert support system. Such a system, given a task to be
performed and the set of actors available, would suggest alternative ways to
organize the actors or work out the implications of particular organizational
designs. Based on the recipes for different coordination methods, the system
would suggest what coordination work each agent would do and even what
kinds of support systems would be useful. A possible output of such a system is
a set of Object Lens (Lai, et al., 1988) templates and message processing rules for
each actor, designed to support the kinds of coordination methods that role actor.

2.2  Designing computer-support systems

One possible use for a model of an organization is to suggest possible
information systems to support the members of a group performing the task by
suggesting what information should be provided to help them coordinate.

Such a tool may be especially valuable for new uses of information
systems. Most current uses of information systems have been designed to
completely automate some function (e.g., a payroll or accounting system) or to
support a single individual working alone (e.g., 2 word processor or a
spreadsheet). For technologies such as electronic mail or inter-organizational
order processing systems, however, such a view is unhelpful. It may be more
useful to think of such systems as supporting some coordination process.

For example, one coordination problem faced by engineers making
changes is determining which other engineers might be affected by a proposed
change. An information system could help by notifying them of interactions
with other parts they might otherwise overlook or by helping them find the
engineer responsible for a particular part.

Currently, engineers seem to independently and informally keep track of
which other engineers’ parts interact with the parts they maintain. This kind of
information is easy to maintain manually and in a decentralized fashion when
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the development group is small and physically close together but the task
becomes more difficult as the group grows and as other, more remote groups are
involved.

One way to implement such a system would be a database of interfaces
between parts and users; an engineer planning to modify an interface could use.
the database to determine who should be notified. However, such a database
might quickly become out of date. If so, it would be no worse than the current
system but would offer few advantages and would therefore probably not be
used. (In fact, one of our interviewees in the Computer Software Co. had
developed a database of interfaces, but had decided not to use it until a better
system could be devised to keep it up to date.) A more useful system would
include better methods and motivations for users to register their use of
interfaces. For example, having a tool that noticed when a new interface was
used might make it easier for an engineer to know to register as a user of the
interface. For computer software, a system could compute the interdependencies
directly from the code of the operating system, thus guaranteeing a complete and
accurate list.

2.3  Effects of intensive use of information technology

The use of information technology may differentially affect the costs of
different organizations. For example, in the market model, the response center
needs to send the same message (bid request) to multiple actors. To support this
communication, the organization could use some kind of computer bulletin
board on which task announcements could be posted. Such a system could cut
the coordination cost in half by replacing all bid request messages with a single
broadcast. Processing of bids could also be automated, further reducing the cost.
By contrast in the other organizations, such a system would only speed the
transmission of messages, not reduce the number required.
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3 Future work

In this section I will briefly describe some further research suggested by
the modelling technique and the typology.

3.1  Where do goals come from

First, I am interested in developing methods for identifying an
organization’s goals. For the purposes of this study I specified the the goals in
which I was interested and studied how the organization achieved those goals.
As aresult I did not consider alternative goals the organization could have
chosen to pursue or how the particular goals were chosen. In a more general
- model, we would also include how goals are chosen by the organization.

I also did not consider the interaction of organizational and individual
goals. An extended model would include incentives and a model of convincing
actors to do something.

3.2  Development of coordination knowledge

Second, I would like to study how coordination methods develop. In the
current study, I assumed actors knew how to coordinate and focused on what
knowledge was necessary and what made it necessary. A possible extension,
therefore, is to study the origins of these methods.

There are many possible sources for these methods, such as training,
previous experiences, observing or asking coworkers or negotiation with other
groups. One possible strategy for studying changes in coordination methods is
to examine how organizations react to generational changes (Henderson and
Clark, 1989).
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3.3 Computer simulations

Third, I hope to use the modelling technique as a basis for developing
computer simulations of organizations. Such simulations would provide a
powerful tool for exploring the implications of different organizational structures
and distributions of knowledge and capabilities.

Two key issues that need to be solved in implementing these models are
the representation of the actors’ knowledge and efficient ways of implementing
their reasoning,

3.4 Presentation of the models

Finally, I am interested in developing more concise representations of the
‘models. As currently presented, they are not very easy to read. Furthermore, the
methods used to generate alternative organizations are some what ad hoc. One
approach to simplifying these models might be to use inheritance and
specialization so that only the differences between similar processes would have
to be noted. One possibility is to use the work on abstraction in planning
(Tenenberg, 1988) to represent coordination at different levels of abstraction.
Organizations might therefore be similar at some abstract level and yet different
in particulars.

For example, consider the coordination necessary for a group of actors
(see Figure 8.1) to cooperatively perform some task. This is an example of a

Figure 8.1. A collection of general purpose (circles) and specialized actors (triangles and
squares).
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Figure 8.2. Alternative ways of performing a task: with or without task decomposition
and with no, hierarchical or market task assignment.

Do Key O ‘Individual actions
task :I Communications

Decompos Integrate
task subtasks results
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W
subordinates subordinate Ats:Siin | reaéifﬂftc;r

Request Wait for
bids bids

particular generic coordination process, namely the process of task assignment.
One actor (the dark circle in the figure) has a task to be done.

The actor can perform the task in several ways. First, it can simply do the
task itself. Second, it can decompose the task into subtasks, do each of the
subtasks and integrate the results. Finally, it may assign the task (or one of the
subtasks) to one of the other actors, either the entire task to a general purpose
actor (the other circles) or specific subtasks to specialist actors (the triangles and
squares). To determine which other actors are available to perform a task, the
actor can either keep track of the status of all actors and picking an appropriate
one (as in a hierarchical organization) or request actors to bid on the task (as in a
market). These options are summarized in Figure 8.2.

While simple, this model gives rises to a number of distinctive com-
munications patterns. For example, if an actor always follows the same process
when assigning tasks and subtasks (e.g., always uses bidding or never
decomposes tasks) there are six different organizational forms that will result,
shown in Figure 8.3. Since each subordinate actor can follow this process,
complex organizational forms may quickly emerge. At the highest level of
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Figure 8.3. Organizational structures resulting from different combinations of the

abstract steps above.
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abstraction, these organizations are the same, since they have a common goal;
they differ only in the details of how they achieve that goal.

A reanalysis of coordination mechanisms suggested by earlier researchers
in terms of the information processing view may suggest common patterns of
communication that could be used to simplify the models. A second way to
simplify these diagrams is to use inheritance and specialization so that only the
differences between similar processes would have to be noted.

4 Conclusion

I began this thesis by asking, “What good are organizations?” My answer
was, essentially, that organizations are ways of coordinating the actions of
multiple actors to achieve common goals. As new technologise make possible
new ways of coordinating, understanding what individuals in organizations do
to coordinate becomes increasingly impdrtant.

This thesis has presented the first steps towards a theory of coordination.
I have developed a technique for modelling coordination methods, based on
ideas from distributed artificial intelligence, and a typology of coordination
methods found in three case sites.
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Much remains to be done, but even the initial results of my thesis should
be useful in several ways. A better understanding of how individuals work
together may provide a more principled approach for designing new computer
applications, for analyzing the way organizations are currently coordinated and
for explaining perceived problems with existing approaches to coordination. By
systematically exploring the space of possible coordination strategies, we may be
able to discover new kinds of organizations—organizations in which humans
and computers work together in as yet unimagined ways.
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