Papers

Export 11 results:
Filters: Author is Crowston, Kevin  [Clear All Filters]
Journal Article
Borycz, J., Olendorf, R., Specht, A., Grant, B., Crowston, K., Tenopir, C., et al.. (2023). Perceived benefits of open data are improving but scientists still lack resources, skills, and rewards. Humanities And Social Sciences Communications, 10(1). https://doi.org/10.1057/s41599-023-01831-7
Ebel, P., Söllner, M., Leimeister, J. Marco, Crowston, K., & de Vreede, G. - J.. (2021). Hybrid intelligence in business networks. Electronic Markets. https://doi.org/10.1007/s12525-021-00481-4
PDF icon Ebel2021_Article_HybridIntelligenceInBusinessNe.pdf (605.72 KB)
Choudhury, P., Crowston, K., Dahlander, L., Minervini, M. S., & Raghuram, S.. (2020). GitLab: Work where you want, when you want. Journal Of Organizational Design, 9(1), 23. https://doi.org/10.1186/s41469-020-00087-8
PDF icon s41469-020-00087-8.pdf (1.14 MB)
Crowston, K., Erickson, I., & Nickerson, J.. (2024). Editorial: Sharing work with AI: introduction to the special issue on the futures of work in the age of intelligent machines. Information Technology & People, 37(7), 2353 - 2356. https://doi.org/10.1108/ITP-12-2024-994
Fortson, L., Crowston, K., Kloetzer, L., & Ponti, M.. (2024). Artificial Intelligence and the Future of Citizen Science. Citizen Science: Theory And Practice, 9(1), 32. https://doi.org/10.5334/cstp.812
Conference Proceedings
Bullard, J., Crowston, K., Jackson, C. B., Smith, A. O., & Østerlund, C.. (2024). Folksonomies in crowdsourcing platforms: Three tensions associated with the development of shared language in distributed groups. In The European Conference on Computer-Supported Cooperative Work (ECSCW). https://doi.org/10.48340/ecscw2024_n06
PDF icon ECSCW2024_Folksonomy_Crowdsourcing__Final_.pdf (1.59 MB)
Petridis, S., Diakopoulos, N., Crowston, K., Hansen, M., Henderson, K., Jastrzebski, S., et al.. (2023). AngleKindling: Supporting Journalistic Angle Ideation with Large Language Models. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3544548.3580907
Conference Paper
Wang, S., Menon, S., Long, T., Henderson, K., Li, D., Crowston, K., et al.. (2024). ReelFramer: Human-AI Co-Creation for News-to-Video Translation. In CHI '24: CHI Conference on Human Factors in Computing SystemsProceedings of the CHI Conference on Human Factors in Computing Systems (1 - 20). https://doi.org/10.1145/3613904.3642868
Østerlund, C., Crowston, K., Jackson, C. B., Takou-Ayaoh, M., Wu, Y., & Katsaggelos, A. K.. (2024). Mutual learning in human-AI interaction. In Trust and Reliance in Evolving Human-AI Workflows (TREW) Workshop, ACM CHI Conference. Presented at the Trust and Reliance in Evolving Human-AI Workflows (TREW) Workshop, ACM CHI Conference, Honolulu, HI.
PDF icon TREW_Workshop_Paper_2024.pdf (392.26 KB)
Book Chapter
Crowston, K., & Squire, M.. (2017). Lessons Learned from a Decade of FLOSS Data Collection. In S. Adam Matei, Jullien, N., & Goggins, S. P. (Eds.), Big Data Factories (pp. 79 - 100). https://doi.org/10.1007/978-3-319-59186-5
Hall, K. L., Vogel, A. L., & Crowston, K.. (2019). Comprehensive collaboration plans: Practical considerations spanning across individual collaborators to institutional supports. In K. L. Hall, Vogel, A. L., & Croyle, R. T. (Eds.), Strategies for Team Science Success (pp. 587-611). https://doi.org/10.1007/978-3-030-20992-6_45